y × 2 + y + y + 8 = 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
suy ra y : ( 1/2+1/8+1/8) =36
y : 3/4 =36
y = 36 x 3/4
y = 27
Bs: \(x,y\in \mathbb{Z}\)
Ta có \(36-y^2=8\left(x-2021\right)^2\ge0\Leftrightarrow y^2\le36\)
Mà \(8\left(x-2021\right)^2\) và 36 chẵn nên y chẵn
Do đó \(y^2\in\left\{4;16;36\right\}\)
Với \(y^2=4\Leftrightarrow8\left(x-2021\right)^2=32\Leftrightarrow\left(x-2021\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x=2025\\x=2017\end{matrix}\right.\)
Với \(y^2=16\Leftrightarrow8\left(x-2021\right)^2=20\Leftrightarrow\left(x-2021\right)^2=\dfrac{5}{2}\left(loại\right)\)
Với \(y^2=36\Leftrightarrow8\left(x-2021\right)^2=0\Leftrightarrow x=2021\)
Vậy \(\left(x;y\right)=\left(2025;2\right);\left(2025;-2\right);\left(2017;2\right);\left(2017;-2\right);\left(2021;6\right);\left(2021;-6\right)\)
Ta có: \(y^2\ge0\forall y\in Z\)
\(\Rightarrow-y^2\le0\forall y\in Z\)
\(\Rightarrow36-y^2\le36\forall y\in Z\)
mà \(36-y^2=8\left(x-2010\right)^2\) (*)
nên \(8\left(x-2010\right)^2\le36\forall x\in Z\)
\(\Rightarrow\left(x-2010\right)^2\le\dfrac{36}{8}< 5\)
Mặt khác: \(\left(x-2010\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;2;3;4\right\}\) (1)
Lại có: \(x\in Z\) nên \(x-2010\in Z\) (2)
Từ (1) và (2) \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\)
+, Với \(x-2010=0\Leftrightarrow x=2010\) , (*) trở thành:
\(36-y^2=0\)
\(\Rightarrow y^2=36\Rightarrow\left[{}\begin{matrix}y=6\\y=-6\end{matrix}\right.\left(tm\right)\)
+, Với \(\left(x-2010\right)^2=1\Leftrightarrow\left[{}\begin{matrix}x-2010=1\\x-2010=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2011\\x=2009\end{matrix}\right.\)
Khi đó: (*) ⇔ \(36-y^2=8\)
\(\Rightarrow y^2=28\Rightarrow y=\pm\sqrt{28}\left(ktm\right)\)
+, Với \(\left(x-2010\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x-2010=2\\x-2010=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2010\\x=2008\end{matrix}\right.\)
Khi đó: (*) ⇔ \(36-y^2=8\cdot4\)
\(\Rightarrow y^2=4\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\left(tm\right)\)
Vậy ...
Lời giải:
$y^2=36-8(x-2024)^2\leq 36$ (do $8(x-2024)^2\geq 0$)
$\Rightarrow y\leq 6$
Lại có: $y^2=36-8(x-2024)^2$ chẵn nên $y$ chẵn
$\Rightarrow y\in\left\{0; 2; 4; 6\right\}$
Nếu $y=0$ thì $8(x-2024)^2=36$
$\Rightarrow (x-2024)^2=\frac{36}{8}\not\in\mathbb{N}$ (loại)
Nếu $y=2$ thì $8(x-2024)^2=36-y^2=36-2^2=32$
$\Rightarrow (x-2024)^2=4\Rightarrow x-2024=\pm 2$
$\Rightarrow x=2026$ hoặc $x=2022$ (tm)
Nếu $y=4$ thì $8(x-2024)^2=36-4^2=20$
$\Rightarrow (x-2024)^2=\frac{20}{8}\not\in\mathbb{N}$ (loại)
Nếu $y=6$ thì $8(x-2024)^2=36-6^2=0$
$\Rightarrow x-2024=0$
$\Rightarrow x=2024$ (tm)
Vậy............
x,y\(\in Z\) mới đúng nhé
\(8\left(x-2010\right)^2\ge0\Rightarrow36-y^2\ge0\Rightarrow36\ge y^2\)
\(\Rightarrow y^2\in\left\{0,1,4,9,16,25,36\right\}\)
Xét \(y^2=0\Rightarrow8\left(x-2010\right)^2=36\Rightarrow\left(x-2010\right)^2=\frac{9}{2}\)(vô lí)
Tương tự xét (tự xét) thấy chỉ có \(y^2=36\Rightarrow x=2010\) thỏa mãn
Vậy \(\left(x,y\right)\in\left\{\left(2010,-6\right);\left(2010,6\right)\right\}\) thỏa mãn
Ta có: \(36-y^2=8\left(x-2010\right)^2\Rightarrow8\left(x-2010\right)^2+y^2=36\)
Vì \(y^2\ge0\Rightarrow8\left(x-2010\right)^2\le36\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}\)
Mà (x-2010)2 là số chính phương => (x-2010)2=4 hoặc (x-2010)2=1 hoặc (x-2010)2=0
- Với \(\left(x-2010\right)^2=4\Rightarrow\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=2012\\x=2008\end{cases}}}\)
=>y2 = 4 => y = 2 (y thuộc N)
- Với \(\left(x-2010\right)^2=1\Rightarrow y^2=36-8=28\left(loại\right)\)
- Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\)
=>y2=36 => y=6 (y thuộc N)
Vậy các cặp (x;y) là (2012;2);(2018;2);(2010;6)
Ta có: \(36-y^2=8\left(x-2010\right)^2\Rightarrow8\left(x-2010\right)^2+y^2=36\)
Vì \(y^2\ge0\Rightarrow8\left(x-2010\right)^2\le36\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}\)
Mà \(\left(x-2010\right)^2\)là số chính phương \(\Rightarrow\left(x-2010\right)^2=4\)hoặc \(\left(x-2010\right)^2=1\)hoặc \(\left(x-2010\right)^2=0\)
- Với \(\left(x-2010\right)^2=4\Rightarrow\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=2012\\x=2008\end{cases}}}\)
\(\Rightarrow y^2=4\Rightarrow y=2\left(y\inℕ^∗\right)\)
- Với \(\left(x-2010\right)^2=1\Rightarrow y^2=36-8=28\)(loại)
- Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\)
\(\Rightarrow y^2=36\Rightarrow y=6\left(y\inℕ^∗\right)\)
Vậy các cặp \(\left(x;y\right)\)lần lượt là \(\left(2012;2\right);\left(2018;2\right);\left(2010;6\right)\)
ta có: \(y^2\ge0\forall y\)
\(\Rightarrow-y^2\le0\forall y\)
\(\Rightarrow36-y^2\le36\)
MÀ \(36-y^2=8\left(x-2010\right)^2\)
\(\Rightarrow8\left(x-2010\right)^2\le36\)
\(\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}=\frac{9}{2}=4.5\)
Mà \(x\in N\Rightarrow\left(x-2010\right)^2\le4\)
\(\Rightarrow\left(x-2010\right)\in\){-2;-1;0;1;2}
TH1:(X-2010)=-2\(\Rightarrow8\left(X-2010\right)^2=8\times\left(-2\right)^2=32\Rightarrow36-y^2=32\Rightarrow y^2=4\Rightarrow y=2\)(\(y\in N\))
TH2:(x-2010)=-1\(\Rightarrow\)
TH3:(x-2010)=0\(\Rightarrow\)
TH4:(x-2010)=1\(\Rightarrow\)
TH5:(x-2010)=2\(\Rightarrow\)
Vậy (x;y)\(\in\).......