Tìm n thuộc Z :
a, n2 + n - 17\(⋮\)n + 5
b,n2 + 3n - 5 \(⋮\)n - 2
c, n2 - 9n + 7 \(⋮\)n + 2
~ Cần câu TL rõ ràng ~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 E Ư(5)={-1;1;-5;5}
+)n-1=-1=>n=0
+)n-1=1=>n=2
+)n-1=-5=>n=-4
+)n-1=5=>n=6
vậy...
\(n^2+2n-7:n+2=>n\left(n+2\right)-7:n+2\) ) (: là chia hết)
=>-7 chia hết cho n+2
=>n+2 E Ư(-7)={-1;1;-7;7}
+)n+2=-1=>n=1
+)n+2=1=>n=3
+)n+2=-7=>n=-5
+)n+2=7=>n=9
vậy...
tick nhé
Để biểu thức là STN
\(\Rightarrow n^2+3n⋮n-1\)
\(\Rightarrow n^2-n+4n⋮n-1\)
\(\Rightarrow n.\left(n-1\right)+4n⋮n-1\)
Mà \(n.\left(n-1\right)⋮n-1\)
\(\Rightarrow4n⋮n-1\)
\(\Rightarrow4n-4+4⋮n-1\)
\(\Rightarrow4.\left(n-1\right)+4⋮n-1\)
Mà \(4.\left(n-1\right)⋮n-1\)
\(\Rightarrow4⋮n-1\)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(\Leftrightarrow n\in\left\{2;3;5\right\}\)
a) – 13 là bội của n – 2
=>n−2∈Ư (−13)={1; −1;13; −13}
=> n∈{3;1;15; −11}
Vậy n∈{3;1;15; −11}.
b) 3n + 2 ⋮2n−1 => 2(3n + 2) ⋮2n−1 => 6n + 4 ⋮2n−1 (1)
Mà 2n−1⋮2n−1 => 3(2n−1) ⋮2n−1 => 6n – 3 ⋮2n−1 (2)
Từ (1) và (2) => (6n + 4) – (6n – 3) ⋮2n−1
=> 7 ⋮2n−1
=> 2n−1 ∈Ư(7)={1; −1;7; −7}
=>2n ∈{2;0;8; −6}
=>n ∈{1;0;4; −3}
Vậy n ∈{1;0;4; −3}.
c) n2 + 2n – 7 ⋮n+2
=>n(n+2)−7⋮n+2
=>7⋮n+2=>n+2∈{1; −1;7; −7}
=>n∈{−1; −3;5; −9}
Vậy n∈{−1; −3;5; −9}
d) n2+3n−5 là bội của n−2
=> n2+3n−5 ⋮ n−2
=> n2−2n+5n−10+5 ⋮ n−2
=> n(n - 2) + 5(n - 2) + 5 ⋮ n−2
=> 5 ⋮ n−2=>n−2∈{1; −1;5; −5}=>n∈{3; 1;7; −3}
Vậy n∈{3; 1;7; −3}.
a: A=3n^2-n-3n^2+6n=5n chia hết cho 5
b: B=n^2+5n-n^2+n+6=6n+6=6(n+1) chia hết cho 6
c: =n^3+2n^2+3n^2+6n-n-2-n^3+2
=5n^2+5n
=5(n^2+n) chia hết cho 5
9: \(\Leftrightarrow n^2+n+3n+2+1⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
10: \(\Leftrightarrow n^2+4n+4-2⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{-1;-3;0;-4\right\}\)
11: \(\Leftrightarrow n^2-2n+1+2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{2;0;3;-1\right\}\)
\(n^2+3n-13⋮n+3\)
Mà \(n+3⋮n+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}n^2+3n-13⋮n+3\\n^2+3n⋮n+3\end{matrix}\right.\)
\(\Leftrightarrow13⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(13\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n+3=1\\n+3=13\\n+3=-1\\n+3=-13\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=-2\\n=10\\n=-4\\n=-16\end{matrix}\right.\)
Vậy ..
n2+3n−13⋮n+3
Mà n+3⋮n+3
⇔{n2+3n−13⋮n+3n2+3n⋮n+3
⇔13⋮n+3
⇔n+3∈Ư(13)
⇔[n+3=1n+3=13n+3=−1n+3=−13
⇔[n=−2n=10n=−4n=−16
Vậy ..
a) \(n^2+n-17⋮n+5\)
\(\Leftrightarrow n\left(n+5\right)-\left(4n+17\right)⋮n+5\)
Mà \(n\left(n+5\right)⋮n+5\)
\(\Rightarrow4n+17⋮n+5\)
\(\Rightarrow4\left(n+5\right)-3⋮n+5\)
mà \(4\left(n+5\right)⋮n+5\)
\(\Rightarrow3⋮n+5\)
\(\Rightarrow n+5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lamf noots
b)\(n^2+3n-5⋮n-2\)
\(\Leftrightarrow n^2+2n+n-5⋮n-2\)
\(\Leftrightarrow n\left(n+2\right)+\left(n-2\right)-3⋮n-2\)
Vì \(\hept{\begin{cases}n\left(n-2\right)⋮n-2\\\left(n-2\right)⋮\left(n-2\right)\end{cases}}\)nên \(3⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lập bảng:
Vậy \(n\in\left\{3;1;5;-1\right\}\)