1. Tìm tất cả các số tự nhiên n thỏa mãn 2n+1,3n+1 là các số chính phương và 2n+9 là số nguyên tố
2. Tìm tất cả các cặp số nguyên dương (m,n) để \(2^m\cdot5^n+25\) là số chính phương
3. a) cho a,b,c thỏa mãn \(2\left(a^2+ab+b^2\right)=3\left(3-c^2\right)\). Tìm max, min \(P=a+b+c\)
b) \(\left\{{}\begin{matrix}a,b,c0\\a+b+c=1\end{matrix}\right.\). Cmr: \(6\left(ab+bc+ca\right)+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\le2\)
c)...
Đọc tiếp
1. Tìm tất cả các số tự nhiên n thỏa mãn 2n+1,3n+1 là các số chính phương và 2n+9 là số nguyên tố
2. Tìm tất cả các cặp số nguyên dương (m,n) để \(2^m\cdot5^n+25\) là số chính phương
3. a) cho a,b,c thỏa mãn \(2\left(a^2+ab+b^2\right)=3\left(3-c^2\right)\). Tìm max, min \(P=a+b+c\)
b) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\). Cmr: \(6\left(ab+bc+ca\right)+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\le2\)
c) \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=3\end{matrix}\right.\). Tìm min \(P=\frac{1}{2xy^2+1}+\frac{1}{2yz^2+1}+\frac{1}{2zx^2+1}\)
d) \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=3\end{matrix}\right.\). Tìm max \(P=a\sqrt[3]{b^3+1}+b\sqrt[3]{c^3+1}+c\sqrt[3]{a^3+1}\)
e) \(\left\{{}\begin{matrix}-1\le a,b,c\le1\\0\le x,y,z\le1\end{matrix}\right.\). Max \(P=\left(\frac{1-a}{1-bz}\right)\left(\frac{1-b}{1-cx}\right)\left(\frac{1-c}{1-ay}\right)\)
f) \(\left\{{}\begin{matrix}a,b>0\\a+2b\le3\end{matrix}\right.\). Max \(P=\frac{1}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}\)
g) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=x+y+z+2\end{matrix}\right.\). Max \(P=\frac{1}{\sqrt{x^2+2}}+\frac{1}{\sqrt{y^2+2}}+\frac{1}{\sqrt{z^2+2}}\)
h) \(a,b,c>0\). Tìm min \(P=\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(a+c\right)^2}+2\sqrt{a^2+bc}\)
Riêng đối với bài số 2. Mình nghĩ điều kiện là $a,b,c>1$ . Tất nhiên điều kiện $a,b,c>0$ thì bài toán không sai, nhưng chặt hơn và khó hơn. Với đk $a,b,c>1$ thì đây là 1 bài toán đã rất quen thuộc với những ai ôn thi HSG toán 9. Lời giải của nó cũng sơ cấp và đẹp hơn nhiều.
Tất nhiên mình vẫn làm theo đề bài trên. Nếu bạn cần, mình cũng sẽ trình bày lời giải bài kia (trong điều kiện có t/g)
\(a+b+c=abc\Rightarrow \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
Đặt $(\frac{1}{a}, \frac{1}{b}, \frac{1}{c})=(x,y,z)$ thì bài toán trở thành:
Cho $x,y,z>0$ thỏa mãn $xy+yz+xz=1$. Tìm min $A=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-2(x^2+y^2+z^2)$
----------------------------
Ta có:
\(A=(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x})(xy+yz+xz)-2(x^2+y^2+z^2)\)
\(=x^3+y^3+z^3+xy^2+yz^2+zx^2+\frac{xy^3}{z}+\frac{yz^3}{x}+\frac{zx^3}{y}-2(x^2+y^2+z^2)\)
Áp dụng BĐT AM-GM:
\(\frac{xy^3}{z}+\frac{yz^3}{x}+\frac{zx^3}{y}=\frac{x^2y^4+y^2z^4+z^2x^4}{xyz}=\frac{(x^2y^4+x^4z^2)+(y^2z^4+y^4x^2)+(z^2x^4+y^2z^4)}{2xyz}\geq \frac{2x^3y^2z+2xy^3z^2+2x^2yz^3}{2xyz}=x^2y+y^2z+z^2x\)
Do đó:
\(A\geq x^3+y^3+z^3+xy^2+y^2z+z^2x+x^2y+y^2z+z^2x-2(x^2+y^2+z^2)\)
\(A\geq (x+y+z)(x^2+y^2+z^2)-2(x^2+y^2+z^2)\)
\(A\geq (x+y+z)[(x+y+z)^2-2]-2[(x+y+z)^2-2]\)
\(A\geq (x+y+z)^3-2(x+y+z)-2(x+y+z)^2+4\)
Đặt \(x+y+z=t\Rightarrow A\geq t^3-2t-2t^2+4\)
Áp dụng AM-GM: \(t=x+y+z\geq \sqrt{3(xy+yz+xz)}=\sqrt{3}\)
\(\Rightarrow t^3-2t-2t^2+4=(t-\sqrt{3})(t^2+\sqrt{3}t-2t+1-2\sqrt{3})+\sqrt{3}-2\geq \sqrt{3}-2\)
(do $t-\sqrt{3}\geq 0$ và \(t^2+\sqrt{3}t-2t+1-2\sqrt{3}\geq 2\sqrt{3}t-2t+1-2\sqrt{3}\geq (2\sqrt{3}-2)\sqrt{3}+1-2\sqrt{3}>0\))
$\Rightarrow A\geq t^3-2t-2t^2+4\geq \sqrt{3}-2$
Vậy $A_{\min}=\sqrt{3}-2$
Bài 1:
Kết hợp đk $abc=1$, BĐT cần chứng minh tương đương với:
\((1+a+b+c)^2\geq 4(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\)
\(\Leftrightarrow 1+a^2+b^2+c^2+2(ab+bc+ac)+2(a+b+c)\geq 4(1+ab+bc+ac)\)
\(\Leftrightarrow a^2+b^2+c^2+2a+2b+2c\geq 3+2ab+2bc+2ac(*)\)
Theo nguyên lý Di-rich-let thì trong 3 số $a,b,c$ luôn tồn tại ít nhất 2 số cùng phía so với $1$
Không mất tổng quát giả sử đó là $a,b$
Khi đó: \((a-1)(b-1)\geq 0\Leftrightarrow ab+1\geq a+b\Rightarrow 1+c\geq ac+bc\)
\(\Rightarrow 2+2c\geq 2ac+2bc(1)\)
Áp dụng BĐT AM-GM:
\(a^2+b^2\geq 2ab(2)\)
\(c^2+2a+2b=c^2+a+a+b+b\geq 5\sqrt[5]{c^2a^2b^2}=5(3)\)
Lấy $(1)+(2)+(3)$ rồi rút gọn ta thu được $(*)$ . Do đó BĐT ban đầu đúng. Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$