Tìm x 5x^2-5x=x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(-4x+5+2x-1=3\Leftrightarrow-2x=-1\Leftrightarrow x=\dfrac{1}{2}\)
b, \(-2x+2=2\Leftrightarrow x=0\)
c, \(-2x-6=-8\Leftrightarrow x=1\)
ta có
a. (5x-7)(x-9)-(-x+3)(-5x+2)= 2x(x-4)-(x-1)(2x+3)
\(\Leftrightarrow5x^2-52x+63-\left(5x^2-17x+6\right)=2x^2-8x-\left(2x^2+x-3\right)\)
\(\Leftrightarrow-35x+57=-9x+3\Leftrightarrow26x=54\Leftrightarrow x=\frac{27}{13}\)
b. (x-3)(-x+10)+(x-8)(x+3)= (5x^2-1)(x+3)-5x^3-15x^2
\(\Leftrightarrow-x^2+13x-30+x^2-5x-24=5x^3+15x^2-x-3-5x^3-15x^2\)
\(\Leftrightarrow8x-54=-x-3\Leftrightarrow9x=51\Leftrightarrow x=\frac{17}{3}\)
a) Ta có: \(x^2-2x+1=25\)
\(\Leftrightarrow\left(x-1\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b) Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
c) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
d) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
a,\(< =>\left(x-1\right)^2-5^2=0< =>\left(x-1-5\right)\left(x-1+5\right)=0\)
\(< =>\left(x-6\right)\left(x+4\right)=0=>\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b,\(< =>25x^2+10x+1-25x^2+9-30=0\)
\(< =>10x-20=0< =>10\left(x-2\right)=0< =>x=2\)
c,\(< =>x^3-1-x\left(x^2-4\right)-5=0\)
\(< =>x^3-1-x^2+4x-5=0< =>4x-6=0< =>x=\dfrac{6}{4}\)\(d,< =>\left(x-2\right)^3-x^3+3^3+6x^2+12x+6-15=0\)
\(< =>x^3-6x^2+12x-x^3+6x^2+12x+10=0\)
\(< =>24x+10=0< =>x=-\dfrac{5}{12}\)
a: Ta có: \(x^2-2x+1=25\)
\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)
b: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
c: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
a) (5x+1)2-(5x+3).(5x-3)=30
\(\Leftrightarrow25x^2+10x+1-25x^2+9-30=0\)
\(\Leftrightarrow10x-20=0\)
\(\Leftrightarrow10x=20\)
\(\Leftrightarrow x=2\)
b) (x-3).(x2+3x+9)+x.(x+2).(2-x)=1
\(\Leftrightarrow x^3-3^3+x\left(4-x^2\right)-1=0\)
\(\Leftrightarrow x^3-27+4x-x^3-1=0\)
\(\Leftrightarrow4x-28=0\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
1 , <=> 25x^2 + 10x + 1 - ( 25x^2 - 9) = 30
<=> 25x^2 + 10x + 1 - 25x^2 + 9 = 30
<=> 10x + 10 = 30
<=> 10 ( x + 1) = 30
<=> x + 1 = 3
<=> x = 2
2, ( x + 3)(x^2 - 3x + 9 ) - x(x+2)(x-2) = 15
<=> x^3 - 27 - x(x^2 - 4) = 15
<=> x^3 - 27 - x^3 + 4x = 15
<=> 4x -27 = 15
<=> 4x = 15 + 27
<=> 4x =42
<=> x = 42/4 = 21/2
******************
a: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
b: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
\(a)\) \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)
\(\Leftrightarrow\)\(\left(5x-1\right)\left(5x-1-5x\right)=0\)
\(\Leftrightarrow\)\(\left(5x-1\right).\left(-1\right)=0\)
\(\Leftrightarrow\)\(5x-1=0\)
\(\Leftrightarrow\)\(5x=1\)
\(\Leftrightarrow\)\(x=\frac{1}{5}\)
Vậy \(x=\frac{1}{5}\)
\(b)\) \(x\left(x+1\right)\left(x+2\right)=0\)
Suy ra \(x=0\) hoặc \(x+1=0\) hoặc \(x+2=0\)
\(\Leftrightarrow\)\(x=0\) hoặc \(x=-1\) hoặc \(x=-2\)
Vậy \(x=0\) hoặc \(x=-1\) hoặc \(x=-2\)
\(c)\) \(\left(3x+2\right)x-3\left(3x+2\right)=0\)
\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=0-2\\x=0+3\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-2\\x=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=3\end{cases}}}\)
Vậy \(x=\frac{-2}{3}\) hoặc \(x=3\)
Chúc bạn học tốt ~
a/ \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)
<=> \(\left(5x-1\right)\left(5x-1-5x\right)=0\)
<=> \(-1\left(5x-1\right)=0\)
<=> \(5x-1=0\)
<=> \(5x=1\)
<=> \(x=\frac{1}{5}\)
b/ \(x\left(x+1\right)\left(x+2\right)=0\)
<=> \(x=0\) hoặc \(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\)
<=> \(x=0\)hoặc \(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
c/ \(\left(3x+2\right)x-3\left(3x+2\right)=0\)
<=> \(\left(3x+2\right)\left(x-3\right)=0\)
<=> \(\orbr{\begin{cases}3x+2=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=-2\\x=3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=3\end{cases}}\)
\(5x^2-5x=x-1\)
\(\Leftrightarrow5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=1\end{cases}}\)
\(5x^2-5x=x-1\)
\(\Leftrightarrow5x^2-5x-x+1=0\)
\(\Leftrightarrow5x^2-6x+1=0\)
\(\Leftrightarrow5x^2-x-5x+1=0\)
\(\Leftrightarrow x\left(5x-1\right)-\left(5x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=1\end{cases}}\)