K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

\(x+\sqrt{x}+12=0\)đk : x >= 0 

Vì \(x+\sqrt{x}+12=x+2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}+12\)

\(=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{47}{4}>0\)

Vậy pt vô nghiệm 

 

17 tháng 5 2021

`x^2+2x+3>2`

`<=>x^2+2x+1>0`

`<=>(x+1)^2>0`

`<=>x+1 ne 0`

`<=>x ne -1`

`(x+5)(3x^2+2)>0`

Vì `3x^2+2>=2>0`

`=>x+5>0<=>x>-5`

c) Ta có: \(21x-10x^2+9< 0\)

\(\Leftrightarrow10x^2-21x-9>0\)

\(\Leftrightarrow x^2-\dfrac{21}{10}x-\dfrac{9}{10}>0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{21}{20}+\dfrac{441}{400}>\dfrac{801}{400}\)

\(\Leftrightarrow\left(x-\dfrac{21}{20}\right)^2>\dfrac{801}{400}\)

\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{3\sqrt{89}+21}{20}\\x< \dfrac{-3\sqrt{89}+21}{20}\end{matrix}\right.\)

 

29 tháng 10 2021

\(PT\Leftrightarrow x^2-2x+\sqrt{6x^2-12x+7}=0\\ \Leftrightarrow x^2-2x+1+\sqrt{6x^2-12x+7}-1=0\\ \Leftrightarrow\left(x-1\right)^2+\dfrac{6\left(x-1\right)^2}{\sqrt{6x^2-12x+7}+1}=0\\ \Leftrightarrow\left(x-1\right)\left(x-1+\dfrac{6}{\sqrt{6x^2-12x+7}+1}\right)=0\\ \Leftrightarrow x=1\left(x-1+\dfrac{6}{\sqrt{6x^2-12x+7}+1}>0\right)\)

29 tháng 10 2021

em cảm ơn 

26 tháng 4 2022

????  

xin lỗi nha ! 

mình mới học lớp 3 

mà bài này khó nắm 

26 tháng 4 2022

ko bt thì ko nhắn nha

NV
13 tháng 1 2021

Đề là \(...-x^3-x-12\) thì pt này không giải được

Phải là \(x^2\)

10 tháng 9 2021

a,ĐK: x≥-1

Đặt \(t=\sqrt{x^2+5x+4}\left(t\ge0\right)\)

  ⇒ \(t^2+t-6=0\)

  \(\Leftrightarrow\left(t+3\right)\left(t-2\right)=0\)

  \(\Leftrightarrow\left[{}\begin{matrix}t=-3\left(loại\right)\\t=2\end{matrix}\right.\)

  \(\Leftrightarrow\sqrt{x^2+5x+4}=2\)

  \(\Leftrightarrow x^2+5x+4=4\)

  \(\Leftrightarrow x\left(x+5\right)=0\)

  \(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-5\left(loại\right)\end{matrix}\right.\)

10 tháng 9 2021

b,ĐK: \(0\le x\le2\)

Ta có: \(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)

    \(\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)     (1)

Đặt \(t=\sqrt{x^2+3x}\left(t\ge0\right)\)

  \(\Rightarrow\left(1\right)\Leftrightarrow-t^2+10-3t=0\)  

             \(\Leftrightarrow\left(t+5\right)\left(2-t\right)=0\)

             \(\Leftrightarrow\left[{}\begin{matrix}t=-5\left(loại\right)\\t=2\end{matrix}\right.\)

             \(\Leftrightarrow\sqrt{x^2+3x}=2\)

             \(\Leftrightarrow x^2+3x=4\)

             \(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)

             \(\Leftrightarrow\left[{}\begin{matrix}x=-4\left(loại\right)\\x=1\left(tm\right)\end{matrix}\right.\)

20 tháng 9 2019

\(a,\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\\sqrt{x+2}=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-\frac{17}{9}\left(l\right)\end{cases}}\)

\(b,\Leftrightarrow\left(5\sqrt{x}-12\right)\left(\sqrt{x}+1\right)=0\)

Bạn giải nốt nhá

3 tháng 1 2020

a) xy2 + 2xy - 243y + x = 0

\(\Leftrightarrow\)x ( y + 1 )2 = 243y

Mà ( y ; y + 1 ) = 1 nên 243 \(⋮\)( y + 1 )2

Mặt khác ( y + 1 ) 2 là số chính phương nên ( y + 1 )2 \(\in\){ 32 ; 92 }

+) ( y + 1 )2 = 32 \(\Rightarrow\orbr{\begin{cases}y+1=3\\y+1=-3\end{cases}\Rightarrow\orbr{\begin{cases}y=2\Rightarrow x=54\\y=-4\Rightarrow x=-108\end{cases}}}\)

+) ( y + 1 )2 = 92 \(\Rightarrow\orbr{\begin{cases}y+1=9\\y+1=-9\end{cases}\Rightarrow\orbr{\begin{cases}y=8\Rightarrow x=24\\y=-10\Rightarrow x=-30\end{cases}}}\)

vậy ...

b) \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)( đk : x > 0 )

\(\Leftrightarrow\sqrt{x^2+12}-4=3x+\sqrt{x^2+5}-9\)

\(\Leftrightarrow\sqrt{x^2+12}-4=3x-6+\sqrt{x^2+5}-3\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+12}+4}=3\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3\right)=0\)

Vì \(\sqrt{x^2+12}+4>\sqrt{x^2+5}+3\Rightarrow\frac{x+2}{\sqrt{x^2+12}+4}< \frac{x+2}{\sqrt{x^2+5}+3}\)

Do đó : \(\frac{x+2}{\sqrt{x^2+12}+4}-\frac{x+2}{\sqrt{x^2+5}+3}-3< 0\)nên x - 2 = 0 \(\Leftrightarrow\)x = 2 

14 tháng 7 2021

\(25\sqrt{\dfrac{x-3}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\left(x\ge3\right)\)

\(=25\sqrt{\dfrac{1}{25}.\left(x-3\right)}-7\sqrt{\dfrac{4}{9}.\left(x-3\right)}-7\sqrt{x^2-9}+18\sqrt{\dfrac{1}{9}.\left(x^2-9\right)}=0\)

\(=5\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Rightarrow\dfrac{1}{3}\sqrt{x-3}-\sqrt{\left(x-3\right)\left(x+3\right)}=0\Rightarrow\sqrt{x-3}-3\sqrt{\left(x-3\right)\left(x+3\right)}=0\)

\(\Rightarrow\sqrt{x-3}\left(1-3\sqrt{x+3}\right)=0\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1=3\sqrt{x+3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{26}{9}\left(l\right)\end{matrix}\right.\)

14 tháng 7 2021

cảm ơn nhaa<33