cho lăng trụ ABCD.A'B'C'D', đáy ABCD là hình thoi , có AB=AC=a và A'A=A'B=A'C=a , G là trọng tâm tam giác ABC . tính gióc giữa 2 mặt phẳng (AA'G) và (A'CD)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Vì A ’ A = A ’ B = A ’ C ⇒ A ' . A B C là hình chóp tam giác đều.
Hình vẽ minh họa: Hình chóp tam giác đều ABCD có 3 mặt phẳng đối xứng.
Vậy hình chóp tam giác đều (không phải tứ diện đều) có 3 mặt phẳng đối xứng.
Đáp án D
Ta có tan 60 ° = A ' H H P ⇒ A ' H = H P 3 .
Lại có 8 a 3 3 3 = 1 3 A ' H . H P 2 ⇒ H P 3 3 = 8 a 3 3 ⇒ H P = 2 a ⇒ A C = 2 a 2 .
Gọi M là trung điểm BC: BC = 2a; AG = 2 3 AI = 2 a 3 ; A ' A G ^ = 60 o .
Suy ra: A ' G = A G tan 60 o = 2 a 3 3
Ta có: V = S A B C . A ' G = 1 2 AB.AC.A'G
= 1 2 a. a 3 . 2 a 3 3 = a 3
Vậy V 3 + V a 3 - 1 = a
Đáp án B
Đáp án C
Từ giả thiết suy ra tứ diện A'ABC đều có cạnh a nên có thể tích là
V A ' A B C = a 3 2 12
Khi đó
V A B C . A ' B ' C ' = d A ' , A B C . S A B C = 3 V A ' A B C = a 3 2 4
Đáp án C
Ta có: A B C ^ = 120 ∘ ⇒ B A D ^ = 60 ∘ suy ra tam giác ABD là tam giác đều cạnh a. Khi đó A’.ABD là chóp đều cạnh đáy bằng a. Như vậy hình chiếu vuông góc của A’ lên mặt đáy trùng với trọng tâm tam giác ABD.