K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

bạn ơi những câu như thế này bạn không nên lên đây hỏi vì nếu những câu này mà bạn không biết làm thì bạn phải đi hỏi giáo viên để giáo viên kiểm tra lại trình độ học vấn của bạn

4 tháng 8 2019

ko bt thì mới hỏi chứ bạn, nếu đã biết như bạn thì cậu đã ko hỏi Nguyễn Vũ

16 tháng 10 2021

\(P=\left(x^2-6x+9\right)+\left(y^2-2y+1\right)+2\\ P=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\\ P_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

ảm ơn cậu nhiều nhé minh đúng là tốt bụng

 

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

5 tháng 3 2022

a, xem lại đề 

\(b,x^2-4x+y^2-6y+1\\ =\left(x^2-4x+4\right)+\left(y^2-6y+9\right)-12\\ =\left(x-2\right)^2+\left(y-3\right)^2-12\ge-12\)

Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Vậy ...

\(c,x^2-4xy+5y^2-2y+5\\ =\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+4\\ =\left(x-2y\right)^2+\left(y-1\right)^2+4\ge4\)

Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy ...

a, 

b,x2−4x+y2−6y+1=(x2−4x+4)+(y2−6y+9)−12=(x−2)2+(y−3)2−12≥−12b,x2−4x+y2−6y+1=(x2−4x+4)+(y2−6y+9)−12=(x−2)2+(y−3)2−12≥−12

Dấu "=" xảy ra⇔{x=2y=3⇔{x=2y=3

Vậy ...

c,x2−4xy+5y2−2y+5=(x2−4xy+4y2)+(y2−2y+1)+4=(x−2y)2+(y−1)2+4≥4c,x2−4xy+5y2−2y+5=(x2−4xy+4y2)+(y2−2y+1)+4=(x−2y)2+(y−1)2+4≥4

Dấu "=" xảy ra⇔{x=2y=1⇔{x=2y=1

Vậy ...

19 tháng 12 2020

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

19 tháng 12 2020

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

25 tháng 9 2023

loading...loading...

18 tháng 10 2021

(9x^2-6x+1)+y^2+4

=(3x-1)^2+y^2+4

ta có (3x-1)^2>= 0

=>(3x-1)^2+y^2>=0

=>(3x-1)^2+y^2+4>=4

GTNN biểu thức là 4 và xảy ra khi 3x-1=0=>x=1/3, y=0

  

18 tháng 10 2021

 

 

HQ
Hà Quang Minh
Giáo viên
9 tháng 8 2023

\(a,M=x^2-4x+5=\left(x-2\right)^2+5\\ \Rightarrow M\ge5\)

Dấu "=" xảy ra \(\Leftrightarrow x=2\)

\(b,N=y^2-y-3=\left(y-\dfrac{1}{2}\right)^2-\dfrac{13}{4}\\ \Rightarrow N\ge-\dfrac{13}{4} \)

Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{1}{2}\)

\(P=x^2+y^2-4x+y+7=\left(x-2\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\\ \Rightarrow P\ge\dfrac{11}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{1}{2}\end{matrix}\right.\)

a: M=x^2-4x+4+1

=(x-2)^2+1>=1

Dấu = xảy ra khi x=2

b: N=y^2-y+1/4-13/4

=(y-1/2)^2-13/4>=-13/4

Dấu = xảy ra khi y=1/2

c: P=x^2-4x+4+y^2+y+1/4+11/4

=(x-2)^2+(y+1/2)^2+11/4>=11/4

Dấu = xảy ra khi x=2 và y=-1/2

27 tháng 8 2021

`A=2x^2-2xy-6x+y^2+10`

`A=x^2-2xy+y^2+x^2-6x+10`

`A=(x-y)^2+x^2-6x+9+1`

`A=(x-y)^2+(x-3)^2+1`

Vì `(x-y)^2+(x-3)^2>=0=>A>=1`

Dấu "=" xảy ra khi `{(x-y=0),(x-3=0):}<=>x=y=3`

16 tháng 10 2023

\(B=y^2-y+1\)

\(=y^2-2\cdot y\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)

\(=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta thấy: \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)

\(\Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)

Dấu \("="\) xảy ra \(\Leftrightarrow y-\dfrac{1}{2}=0\Leftrightarrow y=\dfrac{1}{2}\)

Vậy \(B_{min}=\dfrac{3}{4}\) khi \(y=\dfrac{1}{2}\).

\(---\)

\(C=x^2-4x+y^2-y+5\)

\(=\left(x^2-4x+4\right)+\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x^2-2\cdot x\cdot2+2^2\right)+\left[y^2-2\cdot y\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{3}{4}\)

\(=\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)

              \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x;y\)

Dấu \("="\) xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(C_{min}=\dfrac{3}{4}\) khi \(x=2;y=\dfrac{1}{2}\).

\(Toru\)

16 tháng 10 2023

\(B=y^2-y+1\)

\(=y^2-2.y.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Vì \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\Rightarrow B\ge\dfrac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{1}{2}\)

\(C=x^2-4x+y^2-y+5\)

\(=x^2-4x+4+y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2\)

Vì \(\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2\ge0\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

17 tháng 6 2021

\(a,-x^2+2x+5=-\left(x^2-2x-5\right)=-\left(x^2-2x+1-6\right)=-\left(x-1\right)^2+6\le6\)

dấu'=' xảy ra<=>x=1=>Max A=6

\(b,B=-x^2-y^2+4x+4y+2=-x^2+4x-4-y^2+4x-4+10\)

\(=-\left(x^2-4x+4\right)-\left(y^2-4x+4\right)+10\)

\(=-\left(x-2\right)^2-\left(y-2\right)^2+10=-\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+10\le10\)

dấu"=" xảy ra<=>x=y=2=>Max B=10

\(c,C=x^2+y^2-2x+6y+12=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

dấu'=' xảy ra<=>x=1,y=-3=>MinC=2