Tìm hai số dương bt tổng,hiệu và tích của chúng tỉ lệ nghịch vs 35; 210 và 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Gọi hai số cần tìm là a,b
_Do tổng hiệu và tích ccuar chúng tỉ lệ nghịch với 35,210,12
=>35.(a+b)=210.(a-b)=12.(a.b)
=>35a+35b=210a-210b
=>35a-210a=-35b-210b
=>-175a=-245b =>a/b=-245/175=7/5
vậy a=7;b=5
Em tham khảo bài tại link dưới đây:
Câu hỏi của Hoàng Thị Minh Ngọc - Toán lớp 7 - Học toán với OnlineMath
2.Gọi hai số dương lần lượt là x và y
Theo đề bài ta có : \(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{xy}{\frac{1}{12}}\)
hay \(35\left(x+y\right)=210\left(x-y\right)=12\left(x\cdot y\right)\)
Mà \(BCNN\left(35,210,12\right)=420\)
=> \(\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12\left(x\cdot y\right)}{420}\)
=> \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{x\cdot y}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
+)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{2y}{10}=\frac{y}{5}\)(1)
+) \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{2x}{14}=\frac{x}{7}\)(2)
=> Từ (1) và (2) => \(\frac{x}{7}=\frac{y}{5}\)
Đặt \(\frac{x}{7}=\frac{y}{5}=k\Rightarrow\orbr{\begin{cases}x=7k\\y=5k\end{cases}}\)
=> \(xy=7k\cdot5k=35k^2\)
=> \(35k^2=35\)
=> \(k^2=1\)
=> k = 1(loại âm vì đề bài cho 2 số dương)
Do đó : \(\frac{x}{7}=1\Rightarrow x=7\)
\(\frac{y}{5}=1\)=> \(y=5\)
Vậy x = 7,y = 5
1. Câu hỏi của I will shine on the sky - Toán lớp 7 - Học toán với OnlineMath
Gọi 2 số đó là: x và y
Theo đề bài ta có: 35(x+y)=210(x-y)=12(xy)
=>35(x+y)=210(x-y) (1)
210(x-y)=12(xy) (2)
Từ (1)=> 35x+35y=210x-210y
35y+210y=210x-35x
245y=175x
=> x=(245y)/175=(7y)/5 (3)
Thay vào (2), ta được:
210(x-y)=12(xy)
=>210[(7y)/5-y]=12[(7y/5*y]
=>210*[(2y)/5]=[(84y)/5]*y
=>(420y)/5=(84y^2)/5
=>[(420y)/5]-[(84y^2)/5]=0=>[84y*(5-y)]/5=0
=>y=0(vô lý); 5-y=0=>y=5
Thay vào (3), ta có: x=(7y)/5=(7*5)/5=35/5=7.
Vậy x=7; y=5.
Chắc đúng luôn!!!
-Gọi hai số cần tìm là a,b
_Do tổng hiệu và tích ccuar chúng tỉ lệ nghịch với 35,210,12
=>35.(a+b)=210.(a-b)=12.(a.b)
=>35a+35b=210a-210b
=>35a-210a=-35b-210b
=>-175a=-245b =>a/b=-245/175=7/5
vậy a=7;b=5
^_^
Gọi 2 số dương cần tìm là a và b. Giả sử a > b
Ta có:
- tổng của chúng là (a + b)
- hiệu của chúng là (a - b)
- tích của chúng là ab
biết tổng,hiệu và tích của chúng tỉ lệ nghịch với 35, 210, và 12 ,
tức là : 35(a + b) = 210(a - b) = 12ab
hay rõ hơn là
(a + b) : (a - b) = 210 : 35 => 35(a + b) = 210(a - b) => (a - b) = (a + b)/6 (1)
và (a - b) : ab = 12 : 210 => 12ab = 210(a - b) => (a - b) = 2ab/35 (2)
Từ (1) ta có:
(a - b)/1 = (a + b)/6 = [(a - b) + (a + b)] / (1+ 6) = 2a/7 (3)
Từ (1) ta lại có:
(a - b)/1 = (a + b)/6 = [(a + b) - (a - b)] / (6 - 1) = 2b/5 (4)
Từ (2) & (3)
=> 2ab/35 = 2a/7 => b = 5
Từ (2) & (4)
=> 2ab/35 = 2b/5 => a = 7
Đáp số : a = 7 & b = 5
Gọi 2 số đó là: x và y
Theo đề bài ta có: 35(x+y)=210(x-y)=12(xy)
=>35(x+y)=210(x-y) (1)
210(x-y)=12(xy) (2)
Từ (1)=> 35x+35y=210x-210y 35y+210y
=210x-35x 245y
=175x
=> x=(245y)/175=(7y)/5 (3)
Thay vào (2), ta được: 210(x-y)=12(xy)
=>210[(7y)/5-y]=12[(7y/5*y]
=>210*[(2y)/5]=[(84y)/5]*y
=>(420y)/5=(84y^2)/5
=>[(420y)/5]-[(84y^2)/5]=0
=>[84y*(5-y)]/5=0 =>y=0(vô lý); 5-y=0=>y=5
Thay vào (3), ta có: x=(7y)/5=(7*5)/5=35/5=7.
Vậy x=7; y=5
xin lỗi là mk viết hơi khó hiểu
cop mạng r gáy là mik viết -_- trash