K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

 TL:

\(A=\left(b^2+c^2-a^2\right)^2-4b^2c^2\)

\(=\left(b^2+c^2-a^2+2bc\right)\left(b^2+c^2-a^2-2bc\right)\)

17 tháng 10 2021

Đáp án: 

Giải thích các bước giải:

a, phân tích thành nhân tử

M = (a^2 + b^2 - c^2)^2 - 4a^2b^2
    = (a^2 + b^2 - c^2 - 2ab)(a^2 + b^2 - c^2 + 2ab)
    = [(a-b)^2 - c^2][(a+b)^2 - c^2]
    = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
b. Nếu a,b,c là số đo độ dài 3 cạnh của tam giác thì ta có:
a-b < c => a-b-c < 0
a+c > b => a+b-b > 0
a+b > c => a+b-c > 0
a+b+c > 0
Vì tích của 1 số âm với 3 số dương luôn nhận được kết quả là số âm
=> (a-b-c)(a-b+c)(a+b-c)(a+b+c) < 0
Vậy chứng tỏ a,b,c là số đo độ dài của tam giác thì M < 0

28 tháng 3 2017

Ai trả lời hộ em với

23 tháng 4 2023
 

Phát biểu a) là phát biểu sai. Vì một tam giác đều khi có ba cạnh bằng nhau không nhất thiết phải bằng 2cm, có thể bằng 3cm, 4cm, …

Phát biểu b) là đúng. Vì tam giác đều là tam giác có ba cạnh bằng nhau và ba góc bằng nhau.

Phát biểu c) là sai. Vì tam giác IKH chỉ có hai cạnh và hai góc bằng nhau nên chưa đủ điều kiện để tam giác IKH là tam giác đều.

17 tháng 8 2019

Ta có \(a,b,c\)và \(a',b',c'\)là độ dài các cạnh tương ứng của 2 tam giác đồng dạng

Đương nhiên \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=k\left(k>0\right)\). Khi đó:

\(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{k}\left(a'+b'+c'\right)\)(1)

\(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k\left(a'+b'+c'\right)^2}=\sqrt{k}\left(a'+b'+c'\right)\)(2)

Từ (1) và (2) suy ra ĐPCM.

5 tháng 2 2016

Tớ thiếu chỗ : Gọi ƯCLN ( a2+a-1; a2+a+1 ) là d 

5 tháng 2 2016

a ) Ta có \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

Điều kiện đúng A  - 1

b ) Gọi ƯCLN ( a2+a-1; a2+a+1 )

Vì a+ a + 1 = a ( a + 1 ) - 1 là số lẻ nên d là số lẻ

Mặt khác , 2 = [ ( a2+a+1 ) - ( a2+a-1 ) ] ⋮ d

Nên d = 1 tức là a2+a+1 và a2+a-1 là nguyên tố cùng nhau

Biểu thức A là phân số tối giản