Viết \(\dfrac{18}{2\sqrt{3}-\sqrt{6}}=a\sqrt{3}-b\sqrt{6}\) thì a+b bằng bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\left(\dfrac{\sqrt{3}-1}{4}\right)^2}=\dfrac{\sqrt{12+2\sqrt{3}}}{4}\)
\(\Rightarrow2\cos\alpha=\dfrac{\sqrt{12+2\sqrt{3}}}{2}\). Chọn B.
\(a,=4\sqrt{6}-15\sqrt{6}+\sqrt{\left(2+\sqrt{6}\right)^2}=-11\sqrt{6}+2+\sqrt{6}=2-10\sqrt{6}\\ b,=\dfrac{\sqrt{3}\left(\sqrt{6}-2\right)}{\sqrt{6}-2}+\dfrac{4\left(\sqrt{3}-1\right)}{2}+\left|3\sqrt{3}-12\right|=\sqrt{3}+2\sqrt{3}-2+12-3\sqrt{3}=10\)
\(a,A=2\sqrt{2}-9\sqrt{2}+16\sqrt{2}-5\sqrt{2}\)
\(=4\sqrt{2}\)
\(b,B=\left|1-\sqrt{5}\right|+\sqrt{5+2\sqrt{5}+1}\)
\(=\left|1-\sqrt{5}\right|+\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left|1-\sqrt{5}\right|+\left|\sqrt{5}+1\right|=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)
\(c,C=\dfrac{2+\sqrt{6}+2-\sqrt{6}}{\left(2+\sqrt{6}\right)\left(2-\sqrt{6}\right)}=\dfrac{4}{4-6}=-2\)
Lời giải:
a.
\(A=2\sqrt{2}-3\sqrt{18}+4\sqrt{32}-\sqrt{50}=2\sqrt{2}-9\sqrt{2}+16\sqrt{2}-5\sqrt{2}\)
\(=(2-9+16-5)\sqrt{2}=4\sqrt{2}\)
b.
\(B=\sqrt{(1-\sqrt{5})^2}+\sqrt{(\sqrt{5}+1)^2}=|1-\sqrt{5}|+|\sqrt{5}+1|=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)
c.
\(C=\frac{2+\sqrt{6}+2-\sqrt{6}}{(2-\sqrt{6})(2+\sqrt{6})}=\frac{4}{2^2-6}=-2\)
`a, <=> 5/3 . 3sqrt(x^2+2) + 3/2.2sqrt(x^2+2)-7sqrt6=sqrt(x^2+2)`
`= (5+3-1)sqrt(x^2+2)=7sqrt6`
`<=> 7sqrt(x^2+2)=7sqrt6`.
`<=> x^2+2=36`.
`<=> x^2=34`.
`<=> x=+-sqrt(34)`.
Vậy...
`b, sqrt(4x^2-12x+9)-6=0`
`<=> |2x-3|=6`.
`@ x >=3/2 <=> 2x-3=6.`
`<=> x=9/2 (tm)`.
`@x <3/2 <=> 3-2x=6`
`<=> 2x=-3`
`<=> x=-3/2.`
Vậy...
a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)
b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)
\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)
c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)
a) Ta có: \(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(=6\sqrt{5}-3\sqrt{5}+6\sqrt{2}+6\sqrt{2}\)
\(=3\sqrt{5}+12\sqrt{2}\)
b) Ta có: \(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(=\dfrac{12\left(3+\sqrt{5}\right)}{4}-\dfrac{16\left(\sqrt{5}-1\right)}{4}\)
\(=3\left(3+\sqrt{5}\right)-4\left(\sqrt{5}-1\right)\)
\(=9+3\sqrt{5}-4\sqrt{5}+4\)
\(=13-\sqrt{5}\)
c) Ta có: \(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)
\(=\dfrac{10}{\sqrt{5}}+\dfrac{1}{5}\cdot5\sqrt{5}-2\cdot2\sqrt{5}\)
\(=2\sqrt{5}+\sqrt{5}-4\sqrt{5}\)
\(=-\sqrt{5}\)
e) Ta có: \(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}+1-2+\sqrt{3}\)
\(=2\sqrt{3}-1\)
f) Ta có: \(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{5}+1-\sqrt{5}+2\)
=3
e) Ta có: \(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}+1-2+\sqrt{3}\)
\(=2\sqrt{3}-1\)
f) Ta có: \(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{5}+1-\sqrt{5}+2\)
=3
a) Ta có: \(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)
\(=6\sqrt{5}-3\sqrt{5}+6\sqrt{2}+6\sqrt{2}\)
\(=3\sqrt{5}+12\sqrt{2}\)
b) Ta có: \(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)
\(=\dfrac{12\left(3+\sqrt{5}\right)}{4}-\dfrac{16\left(\sqrt{5}-1\right)}{4}\)
\(=3\left(3+\sqrt{5}\right)-4\left(\sqrt{5}-1\right)\)
\(=9+3\sqrt{5}-4\sqrt{5}+4\)
\(=13-\sqrt{5}\)
Lời giải:
\(\frac{18}{2\sqrt{3}-\sqrt{6}}=\frac{18(2\sqrt{3}+\sqrt{6})}{(2\sqrt{3}-\sqrt{6})(2\sqrt{3}+\sqrt{6})}=\frac{36\sqrt{3}+18\sqrt{6}}{6}\)
\(=6\sqrt{3}+3\sqrt{6}\)
$\Rightarrow a=6; b=-3$
$\Rightarrow a+b=6+(-3)=3$
sao b lại = 3 vậy ạ
mình tưởng phải bằng 3 chứ nhỉ ?