K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

CMR S>1.99 nhé

30 tháng 5 2017

...,,,,,

17 tháng 8 2016

Ta có với a,b là hai số dương và khác nhau thì \(\sqrt{ab}< \frac{a+b}{2}\Leftrightarrow\frac{1}{\sqrt{ab}}>\frac{2}{a+b}\)

Áp dụng điều trên , ta có :

\(A=\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+\frac{1}{\sqrt{3.197}}+...+\frac{1}{\sqrt{198.2}}+\frac{1}{\sqrt{199.1}}\)

     \(>2\left(\frac{1}{1+199}+\frac{1}{2+198}+\frac{1}{3+197}+...+\frac{1}{198+2}+\frac{1}{199+1}\right)\)

\(\Rightarrow A>2.\frac{199}{200}=1,99\)

29 tháng 10 2016

Áp dụng bđt \(\frac{1}{\sqrt{ab}}>\frac{2}{a+b}\) với a > 0; b > 0; a \(\ne\) b ta có:

\(A=\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+...+\frac{1}{\sqrt{199.1}}>\frac{2}{1+199}+\frac{2}{2+198}+...+\frac{2}{199+1}\)

\(A>\frac{2}{200}+\frac{2}{200}+...+\frac{2}{200}\) (199 số \(\frac{2}{200}\))

\(A>\frac{2}{200}.199\)

\(A>\frac{1}{100}.199=1,99>1\)

=> A > 1

29 tháng 7 2016

help me :<<

29 tháng 7 2016

\(VT=2.\left(\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+...+\frac{1}{\sqrt{99.101}}+\frac{1}{\sqrt{100.100}}\right)\)

\(=2\left(\frac{1}{\sqrt{1.199}}+...+\frac{1}{\sqrt{n\left(200-n\right)}}+...+\frac{1}{\sqrt{99.101}}+\frac{1}{100}\right)\)\(\left(1\le n\le99\right)\)

Ta chứng minh \(\sqrt{n\left(200-n\right)}\le100\text{ }\left(\text{*}\right)\)

\(\left(\text{*}\right)\Leftrightarrow200n-n^2\le100^2\Leftrightarrow n^2-2.100n+100^2\ge0\)

\(\Leftrightarrow\left(100-n\right)^2\ge0\)

Do bất đẳng thức cuối đúng nên (*) là đúng, do đó ta có: 

\(A\ge2\left(\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\right)\text{ }\left(\text{100 số }\frac{1}{100}\right)\)

\(=2>1,99\)

8 tháng 12 2016

Áp dụng BĐT sau : \(\frac{1}{\sqrt{a.b}}>\frac{2}{a+b}\) với \(a\ne b\) (bạn tự chứng minh) , ta được : 

\(A=\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+\frac{1}{\sqrt{3.197}}+...+\frac{1}{\sqrt{199.1}}\)

\(>2.\left(\frac{1}{1+199}+\frac{1}{2+198}+\frac{1}{3+197}+...+\frac{1}{199+1}\right)\)

\(=2.\frac{199}{200}=1,99\)

Vậy A > 1,99

7 tháng 12 2016

mi tích tau tau tích mi xong tau trả lời nka

việt nam nói là làm

6 tháng 1 2018

A=1.2+2.3+...+199.200

3A = 1.2.3 + 2.3.3 +...+ 199.200.3

3A = 1.2.(3 - 0) + 2.3.(4 - 1) +...+ 199.200. (201 - 198)

3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 199.200.201 - 198.199.200

3A = (1.2.3 + 2.3.4 +...+ 199.200.201) - (0.1.2 + 1.2.3 +...+ 198.199.200)

3A = 199.200.201 - 0.1.2

3A = 199.200.201

A = \(\frac{199.200.201}{3}=2666600\)

6 tháng 1 2018

Đặt tên biểu thức là A

Ta có : A=1.2+2.3+3.4+..+198.199+199.200

<=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... + 199.200.(201 - 98)

<=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 199.200.201

<=> 3A = 199.200.201

<=> A = 199.200.201 : 3

<=> A = 2 666 600

Vậy A=2 666 600

16 tháng 9 2015

Ta có : 
A = 1.2 + 2.3 + 3.4 + ... + 198.199 + 199.200 
= 1.(1 + 1) + 2.(2 + 1) + 3.(3 + 1) + ... + 198(198 + 1) + 199(199 + 1) 
= (1^2 + 1) + (2^2 + 2) + (3^2 + 3) + ... + (198^2 + 198) + (199^2 + 199) 
= (1 + 2 + 3 + 4....+ 198 + 199) + (1^2 + 2^2 + 3^2 + ...+ 198^2 + 199^2) 
* Dễ chứng minh : 
....1 + 2 + 3 +...+ n = n(n + 1)/2 
.... 1^2 + 2^2 +...+ n^2 = [n(n + 1)(2n + 1)]/6 
Suy ra : A = [199.(199 + 1)]/2 + [199.(199 + 1)(2.199 + 1)]/6 = 2666600

26 tháng 11 2015

3A =1.2.3 +2.3.(4-1) +3.4.(5-2) +4.5.(6-3)....+199.200.(201 -198)

    = 1.2.3+2.3.4 -1.2.3 +3.4.5- 2.3.4 + 4.5.6 - 3.4.5 +......+ 199.200.201 -198.199.200

 3A =199.200.201 

A=199.200.67 =254600