cho tam giác abc vuông tại a D là điểm nằm trong tam giác sao cho CD=CA M là một điểm trên canh AB sao cho BDM=1/2 ACD N là giao điểm của MD và dường cao AH chứng minh DM=DN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: góc MAD+góc BAD=90 độ
góc DAH+góc BDA=90độ
góc BAD=góc BDA
=>góc MAD=góc HAD
Xét ΔAHD và ΔAMD có
AH=AM
góc HAD=góc MAD
AD chung
=>ΔAHD=ΔAMD
=>góc AMD=90 độ
Xét ΔAMN vuông tại M và ΔAHC vuông tại H có
AM=AH
góc MAN chung
=>ΔAMN=ΔAHC
=>AN=AC
=>ΔANC cân tại A
a: Ta có: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}+60^0=90^0\)
=>\(\widehat{ABC}=30^0\)
Xét ΔCAD có CA=CD
nên ΔCAD cân tại C
b: Xét ΔCAM và ΔCDM có
CA=CD
AM=DM
CM chung
Do đó: ΔCAM=ΔCDM
c: Ta có: ΔCAM=ΔCDM
=>\(\widehat{ACM}=\widehat{DCM}\)
=>\(\widehat{ACP}=\widehat{DCP}\)
Xét ΔPAC và ΔPDC có
CA=CD
\(\widehat{PCA}=\widehat{PCD}\)
CP chung
Do đó: ΔPAC=ΔPDC
=>\(\widehat{PAC}=\widehat{PDC}\)
mà \(\widehat{PAC}=90^0\)
nên \(\widehat{PDC}=90^0\)
=>PD\(\perp\)BC
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.