Cho \(A=999993^{1999^{ }}-55555^{1997}\)
CMR \(A⋮5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
31999 = ( 34 )449 . 33 = 81449 . 27
Mình bận đi học rồi bạn tự làm tiếp nha
ta có \(A=999993^{1999}-555557^{1997}\\ =\left(999993^{499}\right)^4.999993^3-\left(555557^{499}\right)^4.555557\\ =\left(...1\right)^4.\left(...7\right)-\left(...1\right)^4.\left(...7\right)\\ =\left(...1\right).\left(...7\right)-\left(...1\right).\left(...7\right)\\ =\left(...7\right)-\left(...7\right)=\left(...0\right)\)
vì A có tận cùng bằng 0 nên A chia hết cho 5 (đpcm)
A = (999993^4.499+3)-(555557^4.499+1)
A = (999993^4.499).999993^3-(555557^4.499).555557
A = (...1).(...7)-(...1).555557
A = (...7)-(...7)
A = (...0) chia hết cho 5
Vậy A chia hết cho 5
ta có : 31999 = (34)499.33 =81.499.27
=31999 có tận cùng là 7
71997 = (74)499. 7 = 2041499 . 7 = 71997 có tận cùng là 7
Vậy A có tận cùng bằng 0 = A : 5
9999931999-5555571997=9999931996.9999933-5555571996.555557
=(9999934)499.........7-(5555574)499.555557
=...........1499..........7-...........1499.555557
=...................1..........7-.................1.555557
=.....................7-..................7
=................0 chia hết cho 5 vì tận cùng là:0(đpcm)
9999931999-5555571997=9999931996.9999933-5555571996.555557
=(9999934)499.........7-(5555574)499.555557
=...........1499..........7-...........1499.555557
=...................1..........7-.................1.555557
=.....................7-..................7
=................0 chia hết cho 5 vì tận cùng là:0(đpcm)
Ta thấy ( _3)1 = _3; ( _3)2 = _9; ( _3)3 = _7; ( _3)4 = _1; ( _3)5 = _3;...
Vậy nên ( _3)4k = _1; ( _3)4k+1 = _3; ( _3)4k+2 = _9; ( _3)4k+3 = _7;
Từ đó suy ra \(999993^{1999}\) có tận cùng là 7; \(555553^{1997}\) có tận cùng là 3. Vậy A có tận cùng là 4, không chia hết cho 5.
Em xem lại đề bài.
hiu hiu cho số to lm chi cho khổ !!!
A= 999993^1999-555557^1997
A= (999993^4)^499 . 999993^3 - (555557^4)^499 . 555557
Có 1 số tận cùng là 3 hoặc 7 mà mũ 4 lên sẽ tận cùng là 1
=> 555557^4 và 999993^4 tận cùng là 1
=> (999993^4)^499 và (555557^4)^499 chia 5 dư 1
Và 999993^3 và 555557 tận cùng là 7 => chia 5 dư 2
=> (999993^4)^499 . 999993^3 và (555557^4)^499 . 555557 đều chia 5 dư 2
=> (999993^4)^499 . 999993^3 - (555557^4)^499 . 555557 chia 5 dư
=> A chia hết cho 5.
Ta có:9999931999=9999933.(9999934)499=\(\left(\overline{...7}\right)\).\(\left(\overline{...1}\right)\)=\(\overline{...7}\)
5555571997=555557.(5555574)499=\(\left(\overline{...7}\right)\).\(\left(\overline{...1}\right)\)=\(\overline{...7}\)
Mà \(\left(\overline{...7}\right)\)-\(\left(\overline{...7}\right)\)=\(\overline{...0}\)\(⋮\)5
Vậy 9999931999-5555571997\(⋮\)5.
A không chia hết cho 5