K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

C A B M D E d

a) Ta có : CE ⊥ d

                BD ⊥ d

\(\Rightarrow\)CE // BD  (ĐPCM)

b) Xét △CEA và △ADB có :

    AC = AB

   \(\widehat{EAC}=\widehat{ABD}\)(cùng phụ với \(\widehat{DAB}\))

\(\Rightarrow\) △CEA = △ADB (cạnh huyền-góc nhọn)

c) Có △CEA = △ADB

\(\Rightarrow\hept{\begin{cases}BD=AE\\CE=AD\end{cases}}\)(Cặp cạnh tương ứng)

\(\Rightarrow\)BD + CE = AE + AD = DE (ĐPCM)

d)  △ABC vuông tại A có AM là trung tuyến

\(\Rightarrow\)AM = BM = CM

\(\Rightarrow\)△ABM cân tại M

Có : \(\widehat{ECA}=\widehat{BAD}\)(△CEA = △ADB)

       \(\widehat{ACB}=\widehat{ABC}\) (△ABC cân tại A)

\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{ABC}\)

Mà \(\widehat{ABC}=\widehat{MAB}\)(△MAC cân tại M)

\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{MAB}\)

\(\Rightarrow\widehat{ECM}=\widehat{MAD}\)

Xét △ADM và △CEM có :

       EC = AD

       \(\widehat{ECM}=\widehat{MAD}\)

       AM = CM

\(\Rightarrow\)△ADM = △CEM (c-g-c)   (ĐPCM)

\(\Rightarrow\)EM = MD   (Cặp cạnh tương ứng) (1)

Có : \(\widehat{EMA}+\widehat{EMC}=90^o\)

       \(\widehat{EMC}=\widehat{DMA}\)(△ADM = △CEM)

\(\Rightarrow\widehat{EMA}+\widehat{DMA}=90^o\)

\(\Rightarrow\widehat{EMD}=90^o\)(2)

Từ (1) và (2) suy ra △DME vuông cân tại M.

mình không biết

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

mk ko biết cách vẽ hình trên olm nên bạn thông cảm

Vì d ko cắt BC => đường thẳng d // BC

=> \(\widehat{DAB}=\widehat{BAC},\widehat{DBC}=90^0\)

Xét tam giác ABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

                            => \(\widehat{ABC}+\widehat{ACB}=90^0\)

                          => \(\widehat{ABC}=90^0-\widehat{ACB}\)(1)

Ta lại có \(\widehat{DBC}=90^0\)=> \(\widehat{DAB}+\widehat{ABC}=90^0\)  

                                         => \(\widehat{ABC}=90^0-\widehat{DAB}\)(2)

Từ 1,2 => \(\widehat{ACB}=\widehat{DAB}\) 

mà \(\widehat{ABC}=\widehat{ACB}\)( Vì tam giác ABC cân tại A)

=> \(\widehat{DBA}=\widehat{ABC}\)

Mặt khác \(\widehat{DAB}=\widehat{ABC}\)(\(d//BC\))

=> \(\widehat{DAB}=\widehat{DBA}\)

=> tam giác DAB cân tại D => DA=DB

Tương tự :   AE=EC

=> BD + CE =AD+AE

=> BD+CE = DE (đpcm)

10 tháng 11 2019

Ta có d đi qua A, D và E thuộc d 

=>D, A, E thẳng hàng  =>^DAB+^BAC+^CAE=180°  =>^DAB+^CAE=90°(1)

Xét tam giác DAB vuông ở D  =>^DBA+^DAB=90°(2) 

Từ (1) và (2)  =>^CAE=^DAB 

Xét tam giác BAD và tam giác ACE có:  ^DAB=^CAE(cmt) 

AB=AC(tam giác ABC cân)  ^ADB=^AEC(=90°) 

=>Tam giác BAD tam giác ACE(g.c.g)

=> BD=AE; EC=AD

Mà DE=AD+AE

=>DE=BD+CE

A B C M D E I

Gọi O gia điểm DM và AB, O' gia điểm EM và AC (mk quên lấy trong hình mất nên bạn lấy hộ mình nhé ) 

a) Vì M trung điểm BC Nên AM=MA=MC \(\Rightarrow\Delta BMA\)và \(\Delta AMC\)cân tại M.

Vì \(\Delta BMA\)cân tại M nên \(\widehat{MBA}=\widehat{MAB}\)Mặt khác \(\widehat{DAB}=90^0-\widehat{MAB};\widehat{DBA}=90^0-\widehat{MBA}\)Nên \(\widehat{DAB}=\widehat{DBA}\Rightarrow\Delta BDA\)cân tại D \(\Rightarrow DB=DA\).Tương tự \(AE=EC\)

Từ đó ta được \(\Delta DBM=\Delta DAM\left(c.g.c\right)\Rightarrow\widehat{BDM}=\widehat{ADM}\)nên DO phân giác tam giác BDA. Mà BDA là tam giác cân nên DO vuông góc với BA hay \(\widehat{MOA}=90^0\)

Tương tự \(\widehat{MO'A}=90^0\)

Nên \(\widehat{DME}=90^0\)hay tam giác DME vuông tại M 

Tam giác DMA đồng dạng tam giác MEA nên AE/MA = MA/DA hay CE/MA=MA/BD Suy ra \(BD\cdot CE=AM^2=\left(\frac{1}{2}\cdot BC\right)^2=\frac{1}{4}BC^2\left(ĐPCM\right)\)

b) Vì BD//CE nên theo ta-lét BD/CE=DI/IC Suy ra DA/AE=DI/IC => AI//EC nên AI vuông góc BC
                                                                       ~ Chúc bạn học tốt ~ 

c) Gọi H là giao điểm của AI và BC. Đường thẳng qua B song song HE cắt đường thẳng qua C song song HD tại P. Chứng minh D, P, E thẳng hàng. Giúp mik với