tìm x bt:
a) x/4 = 9/10
b) 15/4 = x / 3,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm X:
3,5 x X + 1,54 x 3,5 =15
20 + 12 : ( X - 2019 ) =32
Tính nhanh:
3/7 x 4/13 +3/7 x 9/13 + 5 và 4/7
1)\(3,5\cdot x+1,54\cdot3,5=15\)
\(3,5\left(x+1,54\right)=15\)
\(x+1,54=\frac{15}{3,5}\)
\(x+1,54=\frac{30}{7}\)
\(x=\frac{30}{7}-1,54\)
\(x=\frac{30}{7}-\frac{77}{50}\)
\(x=\frac{961}{350}\)
\(20+\frac{12}{x-2019}=32\)
\(\frac{12}{x-2019}=32-20\)
\(\frac{12}{x-2019}=12\)
\(x-2019=\frac{12}{12}\)
\(x-2019=1\)
\(x=1+2019\)
2)
\(\frac{3}{7}\cdot\frac{4}{13}+\frac{3}{7}\cdot\frac{9}{13}+5\frac{4}{7}\)
\(=\frac{3}{7}\cdot\frac{4}{13}+\frac{3}{7}\cdot\frac{9}{13}+13\cdot\frac{3}{7}\)
\(=\frac{3}{7}\left(\frac{4}{13}+\frac{9}{13}+13\right)\)
\(=\frac{3}{7}\cdot14\)
\(=6\)
3.5*(x-1.54)=15
x+1.54=15;3.5
x+1.54=4.28
x=4.28-1.54
x=2.74
chưa suy nghĩ
a) \(\left(x-3\right)^2+\left(4-x\right)\left(x+4\right)=10\)
\(\Leftrightarrow\left(x^2-2\cdot x\cdot3+3^2\right)+\left(4-x\right)\left(4+x\right)=10\)
\(\Leftrightarrow x^2-6x+9+\left(4^2-x^2\right)-10=0\)
\(\Leftrightarrow x^2-6x-1+16-x^2=0\)
\(\Leftrightarrow-6x+15=0\)
\(\Leftrightarrow6x=15\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
b) \(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c) \(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x^2-3^2\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(x+3\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\left[\left(x+3\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left(x+3\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\left(x+3\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=1\\x+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)
\(\dfrac{4}{5}-\left(-\dfrac{2}{7}\right)-\dfrac{7}{10}\\ =\dfrac{4}{5}+\dfrac{2}{7}-\dfrac{7}{10}\\ =\dfrac{56}{70}+\dfrac{20}{70}-\dfrac{49}{70}\\ =\dfrac{27}{70}\\ 3,5-\left(-\dfrac{2}{7}\right)\\ =\dfrac{7}{2}+\dfrac{2}{7}\\ =\dfrac{49}{14}+\dfrac{4}{14}\\ =\dfrac{53}{14}\\ \left(-3\right).\left(-\dfrac{7}{12}\right)\\ =\dfrac{21}{12}\\ =\dfrac{7}{4}\)
a) 6 x 3 =18 7 x 5 =35 9 x 4=36 8 x 10=80
b) 8 x 7 =56 3 x 9 =27 5 x 6=30 4 x 8=32
a) 6 x 3=18 7 x 5=35 9 x 4=36 8 x 10=80
b) 8 x 7=56 3 x 9=27 5 x 6=30 4 x 8=32
Câu đầu:
12/5 - X x 3/4 =5/4
X x 3/4 =12/5 - 5/4 ra X x 3/4 = 23/20 , X = 23/20 : 3/4 ,X=23/15
Câu hai:
X : 3/5 + 3/8 =15/8
X : 3/5 =15/8 - 3/8 ra X : 3/5 = 15/8 , X= 15/8 x 3/5,X= 9/8
a) \(\left(x+1\right)^3-\left(x-1\right)^3-6\cdot\left(x-1\right)^2=10\)
\(\Rightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\cdot\left(x^2-2x+1\right)=10\)
\(\Rightarrow6x^2+2-6x^2+12x-6=10\)
\(\Rightarrow12x-4=10\)
\(\Rightarrow12x=14\)
\(\Rightarrow x=\dfrac{7}{6}\)
b) \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=42\)
\(\Rightarrow x\left(x^2-25\right)-\left(x^3+8\right)=42\)
\(\Rightarrow x^3-25x-x^3-8=42\)
\(\Rightarrow-25x-8=42\)
\(\Rightarrow-25x=50\)
\(\Rightarrow x=\dfrac{50}{-25}=-2\)
c) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Rightarrow x^3-6x^2+12x-8-\left(x^3-27\right)+6\left(x^2+2x+1\right)=49\)
\(\Rightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Rightarrow24x+25=49\)
\(\Rightarrow24x=24\)
\(\Rightarrow x=\dfrac{24}{24}=1\)
a) ⇔ |2x+3| = 8
⇒ \(\left[{}\begin{matrix}2x+3=8\\2x+3=-8\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}2x=5\\2x=-11\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{11}{2}\end{matrix}\right.\)
Vậy...
b) ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow3\sqrt{x}-7\sqrt{x}+6\sqrt{x}=8\)
\(\Leftrightarrow2\sqrt{x}=8\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\) (Vì \(x\ge0\) )
Vậy x = 16
c) ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{9\left(x-1\right)}=12\)
\(\Leftrightarrow3\sqrt{x-1}=12\)
\(\Leftrightarrow\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=16\)
\(\Leftrightarrow x=17\)(TM)
Vậy x = 17
a) Ta có: \(9\cdot5^x=6\cdot5^6+3\cdot5^6\)
\(\Leftrightarrow9\cdot5^x=9\cdot5^6\)
\(\Leftrightarrow5^x=5^6\)
hay x=6
b) Ta có: \(2^{2x+1}+4^{x+3}=264\)
\(\Leftrightarrow4^x\cdot2+4^x\cdot64=264\)
\(\Leftrightarrow4^x=4\)
hay x=1