K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

Bài 1:

a) tan83° - cotg7° = cotg7° - cotg7° = 0

b) cos\(^2\)20° + cos\(^2\)40° + cos\(^2\)50° + cos\(^2\)70°

= sin\(^2\)70° + cos\(^2\)40° + sin\(^2\)40° + cos\(^2\)70°

= (sin\(^2\)70° + cos\(^2\)70°) + (sin\(^2\)40° + cos\(^2\)40°)

= 1 + 1

= 2

2 tháng 8 2019

Bài 1 c) để mình suy nghĩ

Bài 2: 

a: \(\sin\alpha=\sqrt{1-\left(\dfrac{2}{5}\right)^2}=\dfrac{\sqrt{21}}{5}\)

\(\tan\alpha=\dfrac{\sqrt{21}}{5}:\dfrac{2}{5}=\dfrac{\sqrt{21}}{2}\)

\(\cot\alpha=\dfrac{2}{\sqrt{21}}=\dfrac{2\sqrt{21}}{21}\)

b: Đặt \(\cos\alpha=a;\sin\alpha=b\)

Theo đề, ta có: a-b=1/5

=>a=b+1/5

Ta có: \(a^2+b^2=1\)

\(\Leftrightarrow b^2+\dfrac{2}{5}b+\dfrac{1}{25}+b^2-1=0\)

\(\Leftrightarrow2b^2+\dfrac{2}{5}b-\dfrac{24}{25}=0\)

\(\Leftrightarrow10b^2+2b-24=0\)

=>b=4/5

=>a=3/5

\(\cot\alpha=\dfrac{a}{b}=\dfrac{3}{4}\)

31 tháng 12 2019

12 tháng 11 2018

1: 

a: sin a=căn 3/2

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

cot a=1/tan a=1/căn 3

b: \(tana=2\)

=>cot a=1/tan a=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=5\)

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)

c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=5/13:12/13=5/12

cot a=1:5/12=12/5

10 tháng 7 2016

tích rồi mình mới trả lời

29 tháng 10 2018

a)

Giải bài tập Toán 9 | Giải Toán lớp 9

Tam giác ABC vuông tại A có ∠B = 45o ⇒ΔABC vuông cân tại A

⇒AB = AC ⇒AB/AC = 1

b)

Giải bài tập Toán 9 | Giải Toán lớp 9

Kẻ trung tuyến AD của tam giác vuông ABC

⇒ AD = BD = BC/2

Tam giác ABD có: AD = BD, ∠(ABD) = 60o

⇒ ΔABD là tam giác đều

⇒ AB = AD = BC/2 ⇒ BC = AB

Áp dụng định lí Pytago vào tam giác ABC vuông tại A có:

AB2 + AC2 = BC2

⇔ AB2 + AC2 = 4 AB2

⇔ AC2 = 3 AB2 ⇔ AC = √3 AB

⇔ AC/AB = √3

12 tháng 11 2018

Chọn đáp án A

29 tháng 12 2017

Góc 2α =  A M H ^

a, Ta có:  sin 2 α = A H A M = 2 A H A M = 2 A B . A C B C 2 = 2 sin α . cos α

b,  1 + cos2α =  1 + H M A M = H C A M = 2 H C B C =  2 . A C 2 B C 2 = 2 cos 2 α

c, 1 – cos2α =  1 - H M A M = H B A M = 2 H B B C =  2 . A B 2 B C 2 = 2 sin 2 α