K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 11 2019

\(x< 0\Rightarrow5x-1< 0\)

\(\Rightarrow P=\left|2x-\left|5x-1\right|\right|=\left|2x-\left(1-5x\right)\right|\)

\(=\left|7x-1\right|=1-7x\)

a) Ta có: \(B=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)

=1-a

 

b) Ta có: \(2x^2-5x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{1}{2};2\right\}\)

21 tháng 8 2019

\(A=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\)\(\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)

\(=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\right)\)\(:\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)

\(=\frac{2\left(2\sqrt{x}+1\right)+3\left(\sqrt{x}-2\right)-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\)\(:\frac{2\sqrt{x}+3}{5\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\)\(.\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\frac{2\sqrt{x}+3}{2\sqrt{x}+1}.\frac{5\sqrt{x}}{2\sqrt{x}+3}=\frac{5\sqrt{x}}{2\sqrt{x}+1}\)

\(A\in Z\Leftrightarrow\frac{5\sqrt{x}}{2\sqrt{x}+1}\in Z\Leftrightarrow\frac{10\sqrt{x}}{2\sqrt{x}+1}\in Z\)

\(\Rightarrow\frac{10\sqrt{x}+5-5}{2\sqrt{x}+1}\in Z\Leftrightarrow5-\frac{5}{2\sqrt{x}+1}\in Z\)

\(\Rightarrow\frac{5}{2\sqrt{x}+1}\in Z\Rightarrow2\sqrt{x}+1\inƯ_5\)

Mà \(Ư_5=\left\{\pm1;\pm5\right\}\)

Nhưng \(2\sqrt{x}+1\ge1\)

\(\Rightarrow\orbr{\begin{cases}2\sqrt{x}+1=1\\2\sqrt{x}+1=5\end{cases}\Rightarrow\orbr{\begin{cases}2\sqrt{x}=0\\2\sqrt{x}=4\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

Vậy \(x\in\left\{0;4\right\}\)

a: \(=2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)

b: \(=3x^2-6x-5x+5x^2-8x^2+24\)

=-11x+24

3 tháng 4 2017

mình giải thế này

a)\(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\frac{\left(1-x\right)^2}{2}\)

\(P=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x+1}\right)^2}{2}\)

\(P=-\sqrt{x}.\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)

b)\(0< x< 1\Rightarrow\sqrt{x}< 1\Rightarrow\sqrt{x}-1< 0\)

\(\Rightarrow-x\left(\sqrt{x}-1\right)>0\)vì \(x>0\)

xong rồi nhé :)

3 tháng 4 2017

Hình như kết quả rút gọn là  \(\sqrt{x}-x\)

2 tháng 9 2017

a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))

2 tháng 9 2017

\(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))