Từ các chữ số 1, 2, 3, 4, 5, 5, 6 lập được các số tự nhiên có 6 chữ số đôi một khác nhau. Tìm ước chung lớn nhất của tất cả các số lập được
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các chữ số của mỗi số là:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45
Vì 45 chia hết cho 9 nên các số đều chia hết cho 9
Gọi ƯCLN của các số đó là n
=> n chia hết cho 9 (1)
Xét 2 số:
987654321 và 987654312
Vì n = ƯCLN(987654321; 987654312)
=> 9 chia hết cho n (2)
Từ (1) và (2) => n = 9
Vậy...
Lập được tất cả 362880 số tự nhiên từ 9 chữ số đó
ƯCLN của các số đó là 9
Các số là:
2035;2053;2305;2350;2503;2530;3025;3052;3205;3250;3502;3520;5023;5032;5203;5230;5302;5320
2035+2053+2305+2350+2503+2530+3025+3052+3205+3250+3502+3520+5023+5032+5203+5230+5302+5320=44563
Đáp án B.
Chọn 3 chữ số trong 5 chữ số có C 5 3 = 10 cách.
Và sắp xếp 3 chữ số ở trên theo thứ tự có 3! = 6 cách.
Suy ra có 6.10 = 60 số có 3 chữ số đôi một khác nhau.
Tổng các chữ số 1, 2, 3, 4, 6 là 16 và gọi số cần tìm có dạng a b c
Khi đó, mỗi chữ số 1, 2, 3, 4, 6 sẽ xuất hiện ở 3 vị trí a,b,c tương ứng là 12 lần.
Vậy tổng của các số lập được là 12.16.(102+101+100) = 21312
Gọi S là tập hợp gồm 8 chữ số đã cho tức là S = {0;1; 2; 3; 4; 5; 6; 7}
Xét các số abcde mở rộng gồm 5 chữ số khác nhau lấy từ S với a có thể bằng 0.
Có 8 cách chọn chữ số a lấy từ tập S.
Có 7 cách chọn chữ số b lấy từ tập S và khác a.
Có 6 cách chọn chữ số c lấy từ tập S và khác a, b.
Có 5 cách chọn chữ số d lấy từ tập S và khác a, b, c.
Có 4 cách chọn chữ số e lấy từ tập S và khác a, b, c, d.
Vậy có 8 x 7 x 6 x 5 x 4 = 6720 số abcde gồm 5 chữ số khác nhau lấy từ S.
Do vai trò mỗi chữ số của tập S xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 6720 : 8 = 840 lần xuất hiện của mỗi chữ số trong mỗi hàng.
Vậy tổng các số abcde mở rộng là:
840 x (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7) x 11111 = 261330720 (1)
Các số abcde mở rộng với a = 0 chính là các số bcde với b, c, d, e là các chữ số khác nhau lấy từ tập T = {1; 2; 3; 4; 5; 6; 7}.
Có 7 cách chọn chữ số b lấy từ tập T.
Có 6 cách chọn chữ số c lấy từ tập T và khác b.
Có 5 cách chọn chữ số d lấy từ tập T và khác b, c.
Có 4 cách chọn chữ số e lấy từ tập T và khác b, c, d.
Vậy có 7 x 6 x 5 x 4 = 840 số bcde với b, c, d, e khác nhau lấy từ tập T.
Do vai trò mỗi chữ số của tập T xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 840 : 7 = 120 lần xuất hiện của mỗi chữ số trong mỗi hàng.
Vậy tổng các số bcde là: 120 x (1 + 2 + 3 + 4 + 5 + 6 + 7) x 1111 = 3732960 (2)
Từ (1) và (2) suy ra tổng các số abcde cần tìm là:
261330720 – 3732960 = 257597760
Đáp án C
Số các số tự nhiên thỏa mãn yêu cầu bài toán là: A 6 4 = 360 số