Bài 2 : Chứng minh rằng 3n + 3 và 6n + 7 là số nguyên tố cùng nhau
Giải giúp nhé , bài kiểm tra 15 phút của tớ đấy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN (3n+2;4n+3)=d
=> (4n+3) chia hết cho d => 3(4n+3) chia hết cho d => 12n+9 chia hết cho d
=> (3n+2) chia hết cho d => 4(3n+2) chia hết cho d => 12n+8 chia hết cho d
=> (12n+9) - (12n+8) chia hết cho d
=> 1 chia hết cho d
=> d\(\in\)Ư(1)
Mà d lớn nhất
=> d=1
=>3n+2 và 4n+3 là hai số nguyên tố cùng nhau (đpcm)
Bài này mkik mới học hồi sáng, bạn kia làm đúng đó, bạn ấy đi(^_^)
Bài 1:
Ta có: \(2+2^2+2^3+...+2^{2010}=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right).\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(2+2^2+2^3+...+2^{2010}=2\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{2008}\left(1+2+4\right)\)
\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)
bài 2:
Gọi d là ƯCLN của 2n+3 và 3n+4 \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow}1⋮d\Rightarrow d=1}\)
\(\RightarrowƯCLN\left(2n+3;3n+4\right)=1\)
\(\Rightarrow\)2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
b: Vì 14n+10 là số chẵn
và 10n+7 là số lẻ
nên 14n+10 và 10n+7 là hai số nguyên tố cùng nhau
5(3n+2)=15n+10
3(5n+3)=15n+9
hai số 15n+9 và 15n+10 là hai số tự nhiên liên tiếp nên ng.tố cùng nhau
\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau
đặt 3n+3 và 6n+7 =d
suy ra : 3n+3 chia hết cho d ; 6n+7 chia hết chia d
suy ra : (6n+7)-(3n+3 chia hết cho d
suy ra : (6n+7)-2(3n+3) chia hết cho d
suy ra : 1 chia hết cho d
suy ra d = 1
vậy 3n+3 và 6n+7 là hai số nguyên tố cùng nhau
tick cho mình nhé chăc chắn dúng .Thank you very much
tôi nghĩ chơi với bạn luôn