K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

A P R C H E M F B Q N L S K D I

a) Kẻ CE, IH, DF vuông góc với AB.

Ta chứng minh được

CE = \(\dfrac{AM}{2},\) DF = \(\dfrac{MB}{2},\)

CE + DF = \(\dfrac{AB}{2}=\dfrac{a}{2}\)

nên IH = \(\dfrac{a}{4}.\)

b) Khi điểm M di chuyển trên đoạn thẳng AB thì I di chuyển trên đoạn thẳng RS song song với AB và cách AB một khoảng bằng \(\dfrac{a}{4}\) (R là trung điểm của AQ, S là trung điểm của BQ, Q là giao điểm của BL và AN).

27 tháng 1 2015

Gọi x là thời gian đi được đến khi ô tô cách điểm M (M là điểm chính giữa quãng đường AB) một khoảng bằng 1/212 khoảng cách từ xe máy đến M.

Ta có quãng đường ô tô đi được là: 270 - 65x = 1/212(270 - 40x)

Giải phương trình ta được x = 3.

Vậy sau 3 giờ thì  ô tô cách điểm M (M là điểm chính giữa quãng đường AB) một khoảng bằng 1/212 khoảng cách từ xe máy đến M.

20 tháng 4 2016

Gọi x là thời gian ô tô đi từ M đến khi ô tô cách M 1 khoảng =1/2 khoảng cách từ xe máy tới M.. 

Theo đề bài, ta có: 270-65x =1/2 (270-40x)

                            270-65x=135-20x

                            270-135=65x -20x

                            135=45x

                            x=135:45

                            x=3(giờ)

Vậy sau 3 giờ thì ô tô cách M 1 khoảng = 1/2 khoảng cách từ xe máy tới M

24 tháng 10 2016

H�nh ?a gi�c TenDaGiac1: DaGiac[A, M, 4] H�nh ?a gi�c TenDaGiac2: DaGiac[M, B, 4] ?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng g: ?o?n th?ng [A, M] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng h: ?o?n th?ng [M, N] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng i: ?o?n th?ng [N, P] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng j: ?o?n th?ng [P, A] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng k: ?o?n th?ng [M, B] c?a H�nh ?a gi�c TenDaGiac2 ?o?n th?ng l: ?o?n th?ng [B, K] c?a H�nh ?a gi�c TenDaGiac2 ?o?n th?ng m: ?o?n th?ng [K, L] c?a H�nh ?a gi�c TenDaGiac2 ?o?n th?ng L_1: ?o?n th?ng [L, M] c?a H�nh ?a gi�c TenDaGiac2 ?o?n th?ng s: ?o?n th?ng [C, D] ?o?n th?ng d: ?o?n th?ng [I, J] ?o?n th?ng e: ?o?n th?ng [C, E] ?o?n th?ng f_1: ?o?n th?ng [D, G] A = (-1.16, 1) A = (-1.16, 1) A = (-1.16, 1) B = (6.34, 1.14) B = (6.34, 1.14) B = (6.34, 1.14) ?i?m M: ?i?m tr�n f ?i?m M: ?i?m tr�n f ?i?m M: ?i?m tr�n f ?i?m N: DaGiac[A, M, 4] ?i?m N: DaGiac[A, M, 4] ?i?m N: DaGiac[A, M, 4] ?i?m P: DaGiac[A, M, 4] ?i?m P: DaGiac[A, M, 4] ?i?m P: DaGiac[A, M, 4] ?i?m K: DaGiac[M, B, 4] ?i?m K: DaGiac[M, B, 4] ?i?m K: DaGiac[M, B, 4] ?i?m L: DaGiac[M, B, 4] ?i?m L: DaGiac[M, B, 4] ?i?m L: DaGiac[M, B, 4] ?i?m C: Giao ?i?m c?a n, p ?i?m C: Giao ?i?m c?a n, p ?i?m C: Giao ?i?m c?a n, p ?i?m D: Giao ?i?m c?a q, r ?i?m D: Giao ?i?m c?a q, r ?i?m D: Giao ?i?m c?a q, r ?i?m I: Trung ?i?m c?a C, D ?i?m I: Trung ?i?m c?a C, D ?i?m I: Trung ?i?m c?a C, D ?i?m E: Giao ?i?m c?a t, f ?i?m E: Giao ?i?m c?a t, f ?i?m E: Giao ?i?m c?a t, f ?i?m G: Giao ?i?m c?a a, f ?i?m G: Giao ?i?m c?a a, f ?i?m G: Giao ?i?m c?a a, f ?i?m J: ?i?m tr�n f ?i?m J: ?i?m tr�n f ?i?m J: ?i?m tr�n f

a. Kẻ \(CE\perp AM;DG\perp MB\) , ta thấy ngay CE = EM; DG = GM (Do AMNP, BMLKA là hình vuông)

Từ I kẻ IJ // CE // DG : IJ là đường trung bình hình thang CEGD. Vậy thì

 \(IJ=\frac{EC+DG}{2}=\frac{EM+MG}{2}=\frac{AB}{4}=\frac{a}{4}.\)

Do \(IJ\perp AB\) nên khoảng cách từ I tới AB là IJ = \(\frac{a}{4}.\)

b. Do khoảng cách từ I tới AB không thay đổi nên khi M di chuyển trên AB thì I di chuyển trên đường thẳng song song AB, cách AB một khoảng bằng \(\frac{a}{4}.\)

8 tháng 12 2018

Bài của mình giống cô giáo :

Câu hỏi của Nguyễn Minh Phương - Toán lớp 8 - Học toán với OnlineMath

Cậu tahm khảo bài của cô nha

17 tháng 4 2018

Gọi x là thời gian ô tô đi từ M đến khi ô tô cách M một khoảng bằng 1/2 khoảng cách từ xe máy tới M. 

Theo đề bài, ta có:

270-65x =1/2 (270-40x)                             

270-65x=135-20x                            

270-135=65x -20x                            

135=45x                            

x=135:45                            

x=3(giờ)

Vậy sau 3 giờ thì ô tô cách M 1 khoảng = 1/2 khoảng cách từ xe máy tới M

30 tháng 3 2018

Đáp án A