K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

a) 3x2 + 8x + 4 = 0

=> 3x2 + 6x + 2x +  4 = 0

=> 3x(x + 2) + 2(x + 2) = 0

=> (3x + 2)(x + 2) = 0

=> \(\orbr{\begin{cases}3x+2=0\\x+2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=-1\end{cases}}\)

b) 4x2 - 4x - 3 = 0

=> 4x2 - 6x + 2x - 3 = 0

=> 2x(2x - 3) + (2x - 3) = 0

=> (2x + 1)(2x - 3) = 0

=> \(\orbr{\begin{cases}2x+1=0\\2x-3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)

1 tháng 8 2019

\(a,3x^2+8x+4=0\) 

\(\Rightarrow3x^2+6x+2x+4=0\) 

\(\Rightarrow3x\left(x+2\right)+2\left(x+2\right)=0\) 

\(\Rightarrow\left(3x+2\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+2=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=-2\end{cases}}}\)

Vậy....

17 tháng 12 2023

Bài 1

a) 5x²y - 20xy²

= 5xy(x - 4y)

b) 1 - 8x + 16x² - y²

= (1 - 8x + 16x²) - y²

= (1 - 4x)² - y²

= (1 - 4x - y)(1 - 4x + y)

c) 4x - 4 - x²

= -(x² - 4x + 4)

= -(x - 2)²

d) x³ - 2x² + x - xy²

= x(x² - 2x + 1 - y²)

= x[(x² - 2x+ 1) - y²]

= x[(x - 1)² - y²]

= x(x - 1 - y)(x - 1 + y)

= x(x - y - 1)(x + y - 1)

e) 27 - 3x²

= 3(9 - x²)

= 3(3 - x)(3 + x)

f) 2x² + 4x + 2 - 2y²

= 2(x² + 2x + 1 - y²)

= 2[(x² + 2x + 1) - y²]

= 2[(x + 1)² - y²]

= 2(x + 1 - y)(x + 1 + y)

= 2(x - y + 1)(x + y + 1)

17 tháng 12 2023

Bài 2:

a: \(x^2\left(x-2023\right)+x-2023=0\)

=>\(\left(x-2023\right)\left(x^2+1\right)=0\)

mà \(x^2+1>=1>0\forall x\)

nên x-2023=0

=>x=2023

b: 

ĐKXĐ: x<>0

\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)

=>\(-x\left(x-4\right)+2x^2-4x-9=0\)

=>\(-x^2+4x+2x^2-4x-9=0\)

=>\(x^2-9=0\)

=>(x-3)(x+3)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

c: \(x^2+2x-3x-6=0\)

=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)

=>\(x\left(x+2\right)-3\left(x+2\right)=0\)

=>(x+2)(x-3)=0

=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

d: 3x(x-10)-2x+20=0

=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)

=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)

=>\(\left(x-10\right)\left(3x-2\right)=0\)

=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)

Câu 1:

a: \(5x^2y-20xy^2\)

\(=5xy\cdot x-5xy\cdot4y\)

\(=5xy\left(x-4y\right)\)

b: \(1-8x+16x^2-y^2\)

\(=\left(16x^2-8x+1\right)-y^2\)

\(=\left(4x-1\right)^2-y^2\)

\(=\left(4x-1-y\right)\left(4x-1+y\right)\)

c: \(4x-4-x^2\)

\(=-\left(x^2-4x+4\right)\)

\(=-\left(x-2\right)^2\)

d: \(x^3-2x^2+x-xy^2\)

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)

\(=x\left[\left(x-1\right)^2-y^2\right]\)

\(=x\left(x-1-y\right)\left(x-1+y\right)\)

e: \(27-3x^2\)

\(=3\left(9-x^2\right)\)

\(=3\left(3-x\right)\left(3+x\right)\)

f: \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x+1+y\right)\left(x+1-y\right)\)

10 tháng 8 2021

đầu bài là tìm x ạ

23 tháng 10 2021

e: ta có: \(4x^2+4x-6=2\)

\(\Leftrightarrow4x^2+4x-8=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

f: Ta có: \(2x^2+7x+3=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

7 tháng 1 2023

`1)`

`a)3x^2-6xy+3y^2=3(x^2-2xy+y^2)=3(x-y)^2`

`b)(x-y)^2-4x^2=(x-y-2x)(x-y+2x)=(-x-y)(3x-y)`

`2)`

`a)2x(x-3)-x+3=0`

`<=>2x(x-3)-(x-3)=0`

`<=>(x-3)(2x-1)=0`

`<=>[(x=3),(x=1/2):}`

`b)x^2+5x+6=0`

`<=>x^2+2x+3x+6=0`

`<=>(x+2)(x+3)=0`

`<=>[(x=-2),(x=-3):}`

7 tháng 8 2021

undefined

undefined

19 tháng 10 2021

\(b,\Rightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Rightarrow5\left(x+2\right)=0\\ \Rightarrow x=-2\\ c,\Rightarrow2x\left(x^2-2x+1\right)=0\\ \Rightarrow2x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ d,\Rightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Rightarrow3x\left(-x-2\right)=0\\ \Rightarrow-3x\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}-3x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

19 tháng 10 2021

a)thiếu dấu

b)(x+2)2 -(x+2)(x-3)=0

(x+2)(x+2-x+3)=0

(x+2)5=0

x+2=0

x=-2

c)2x3-4x2+2x=0

2x(x2-2x+1)=0

2x(x-1)2

suy ra 2 trường hợp

x=0

x-1=0=>x=1

d)(x-1)2-(2x+1)2=0

(x-1-2x-1)(x-1+2x+1)=0

(x-2)3x=0

x=0

x=2

 

 

 

9 tháng 10 2021

1)

a) \(=15x^3-20x^2+10x\)

b) \(=3x^4-x^3+4x^2-9x^3+3x-12x=3x^4-10x^3+4x^2-9x\)

2) 

a) \(\Rightarrow x\left(x^2-6x+12\right)=0\)

\(\Rightarrow x=0\)(do \(x^2-6x+12=\left(x^2-6x+\dfrac{36}{4}\right)+3=\left(x-\dfrac{6}{2}\right)^2+3\ge3>0\))

b) \(\Rightarrow\left(x+3\right)^3=0\Rightarrow x=-3\)

(3x²-5x+2)+(3x²+5x)= bao nhiêu ạ

Giúp em vs ạ . Em cảm ơn

31 tháng 10 2021

\(a,\Rightarrow4x^2-20x-4x^2+3x+4x-3=5\\ \Rightarrow-13x=8\Rightarrow x=-\dfrac{8}{13}\\ b,\Rightarrow3x^2-10x+8-3x^2+27x=-3\\ \Rightarrow17x=-11\Rightarrow x=-\dfrac{11}{17}\\ c,\Rightarrow\left(x+3\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ d,\Rightarrow2x\left(4x^2-25\right)=0\\ \Rightarrow2x\left(2x-5\right)\left(2x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\\ e,Sửa:\left(4x-3\right)^2-3x\left(3-4x\right)=0\\ \Rightarrow\left(4x-3\right)^2+3x\left(4x-3\right)=0\\ \Rightarrow\left(4x-3\right)\left(7x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)

31 tháng 10 2021

a.

4x(x-5) - (x-1)(4x-3)-5=0

 4x^2-20x-4x^2+3x+4x+3=0

(4x^2-4x^2)+(-20x+3x+4x)+3=0

 13x+3 = 0

13x=-3

x=-3/13

b,

(3x-4)(x-2)-3x(x-9)+3=0

3x^2-6x-4x+8 - 3x^2+27x+3=0

(3x^2-3x^2)+(-6x-4x+27x)+(8+3)=0

17x+11=0

17x=-11

x=-11/17

c, 2(x+3)-x^2-3x=0

2(x+3) - x(x+3)=0

(x+3)(2-x)=0

TH1: x+3 = 0; x=-3

TH2: 2-x=0;x=2

 

 

a) Ta có: \(36x^3-4x=0\)

\(\Leftrightarrow4x\left(9x^2-1\right)=0\)

\(\Leftrightarrow x\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=\dfrac{-1}{3}\end{matrix}\right.\)

b) Ta có: \(3x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)