số nhuyên n nhỏ nhất sao cho
\(\left(2n+1\right)⋮\left(n+2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số tự nhiên n nhỏ nhất sao cho :
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮2000,n\ge1\)
a.\(2n^2-3n+1=2n\times\left(n-1\right)-\left(n-1\right)=\left(2n-1\right)\times\left(n-1\right)\Rightarrow2n-1⋮n-1\)
\(\Rightarrow2\left(n-1\right)+1⋮n-1\Rightarrow1⋮n-1\Rightarrow n-1\inƯ\left(1\right)=\left\{1\right\}\Rightarrow n=2\)
b.Tách tương tự nha
\(2n^2-3n+1=\left(2n^2-2n\right)-n+1=2n\left(n-1\right)-n+1\)\(\Rightarrow-n+1⋮n-1\Rightarrow-\left(n-1\right)⋮n-1\)
vậy với mọi x thuộc N đều t/m
b) tương tự nha
Bài 1
Để phân số ko tồn tại thì (n-2)(n+1)=0
=>n=2 hoặc n=-1
Bài 4:
Để phân số không tồn tại thì (2n-1)(n2+1)=0
=>2n-1=0
hay n=1/2
TH1) Với n = 6k
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+1\right)\left(12k+1\right)\) không chia hết cho 6
=> Loại
TH2) Với n = 6k+1
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+2\right)\left(12k+3\right)⋮6\)
=> \(A=\frac{\left(6k+2\right)\left(12k+3\right)}{6}=\left(3k+1\right)\left(4k+1\right)\)là số chính phương
Lại có: ( 3k + 1 ; 4k + 1 ) = ( 3k + 1 ; k ) = ( 2k + 1 ; k ) = ( k + 1 ; k ) = ( k ; 1 ) = 1
=> 3k + 1 và 4k + 1 đồng thời là 2 số chính phương
+) Với k \(\equiv\)\(1,3,5,7\)(mod 8 ) => 4k + 1 không là số cp
+) Với k \(\equiv\)2; 4; 6 ( mod 8) => 3k + 1 không là số chính phương
=> k \(\equiv\)0 ( mod 8) => k = 8h
=> Tìm h bé nhất để 24h + 1 và 32h + 1 là số chính phương(1)
+) Với h \(\equiv\)\(3,4,6\)( mod7) => 24k + 1 không là số chính phương
+) Với h \(\equiv\)1 (mod 7 ) => 32h + 1 không là số cp
=> h \(\equiv\)0; 2; 5 (mod 7 )
=> h = 7m hoặc h = 7n + 2 hoặc h = 7t + 7 ( với m;n; t nguyên dương )
Nếu m = 1 => h = 7 => 24h + 1 = 169 và 32h + 1 = 225 là hai số chính phương và h nhỏ nhất
=> n = 6k + 1 và k = 8h = 56
=> n = 337
=> A = 38025 là số chính phương
TH3) Với n = 6k + 2
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+3\right)\left(12k+5\right)\)không chia hết cho 6
TH4) Với n = 6k + 3
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+4\right)\left(12k+7\right)\)không chia hết cho 6
TH5) Với n = 6k + 4
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+5\right)\left(12k+9\right)\)không chia hết cho 6
TH6) Với n = 6k + 5
ta có \(\left(n+1\right)\left(2n+1\right)=\left(6k+6\right)\left(12k+11\right)⋮6\)
=> \(A=\frac{\left(6k+6\right)\left(12k+11\right)}{6}=\left(k+1\right)\left(12k+11\right)\)
mà ( k + 1; 12k + 11 ) = 1
=> k + 1 và 12k + 11 là 2 số chính phương
tuy nhiên 12k + 11 chia 12 dư 11 mà 1 số chính phương chia 12 không dư 11
=> Trường hợp này loại
Vậy n = 337
Bài giải
Ta có :
\(\left(2n+1\right)=2\left(n+2\right)-3\text{ }⋮\text{ }\left(n+2\right)\)
\(\Leftrightarrow\text{ }3\text{ }⋮\text{ }\left(n+2\right)\)
\(\Leftrightarrow\text{ }n+2\inƯ\left(2\right)\)
Ta có bảng :
\(\Rightarrow\text{ }n\in\left\{-3\text{ ; }-1\text{ ; }-4\text{ ; }0\right\}\)
Mà n nhỏ nhất \(\Rightarrow\text{ }n=-4\)
Bài giải
Ta có :
\(\left(2n+1\right)=2\left(n+2\right)-3\text{ }⋮\text{ }\left(n+2\right)\)
\(\Leftrightarrow\text{ }3\text{ }⋮\text{ }\left(n+2\right)\)
\(\Leftrightarrow\text{ }n+2\inƯ\left(2\right)\)
Ta có bảng :
\(\Rightarrow\text{ }n\in\left\{-3\text{ ; }-1\text{ ; }-4\text{ ; }0\right\}\)
Mà n nhỏ nhất \(\Rightarrow\text{ }n=-4\)