K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017

Đáp án cần chọn là: A

7 tháng 11 2021

C

7 tháng 11 2021

c

15 tháng 4 2018

Thay a = -2, b = 4 vào biểu thức ta được:

( − 2 ) 2 + 2. ( − 2 ) .4 + 4 2 − 1 = 4 + ( − 16 ) + 16 − 1 = 3

25 tháng 9 2021

`a^2 + 2ab+b^2-1`

`= (a+b)^2-1`

`=(a+b)^2 - 1^2`

`=(a+b-1)(a+b+1)`

`= (-2+4-1)(-2+4+1)`

`= 3`

1 tháng 3 2019

Vì |a| = 1,5 nên a = 1,5 hoặc a = -1,5

Với a = 1,5; b = -0,75. Ta có:

M = 1,5 + 2.1,5( - 0,75) – (-0,75)

= 1,5 + ( -2,25) + 0,75

= (1,5 + 0,75) + (-2,25)

= 2,25 + (-2,25) = 0

N = 1,5 : 2 -2 : ( -0,75)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

P = (-2) : (1,5)2 - (-0,75).(2/3)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Với a = -1,5; b = -0,75 ta có:

M = - 1,5 + 2.(-1,5) ( - 0,75) – (-0,75)

= - 1,5 + ( 2,25) + 0,75

= (2,25+ 0,75) - 1,5

= 3 – 1,5 = 1,5

N = - 1,5 : 2 - 2 : ( -0,75)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

P = (-2) : (-1,5)2 — (-0,75).(2/3)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

NV
11 tháng 9 2021

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^3-x^3y^2\)

\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-\left(xy\right)^2\left(x+y\right)\)

\(=10.26-\left(-3\right)^2.2=...\)

11 tháng 9 2021

(x+y)5=32

⇔ x5+5x4y+10x3y2+10x2y3+5xy4+y5 = 32

⇔ x5+y= 32-5xy(x3+y3)-10x2y2(x+y)

              = 32-5.(-3).26-10.(-3)2.2

              = 242 

22 tháng 7 2018

a) Rút gọn M = -6ab(-2b + a). Tính được M = 60.

b) Rút gọn M = 6xy – 7. Tính được N = -10.

16 tháng 5 2019

a) Thay  a = − 2 ,   b = 4 vào biểu thức ta được  ( − 2 ) 2 + 2. ( − 2 ) .4 + 4 2 − 1 = 4 + ( − 16 ) + 16 − 1 = 3

b) Thay  x = 4 vào biểu thức ta được  4. ( − 234 ) + ( − 4 ) .16 = ( − 4 ) .234 + ( − 4 ) .16 = ( − 4 ) . ( 234 + 16 ) = ( − 4 ) .250 = − 1000

26 tháng 12 2021

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)

\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ac-ab}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)

CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}=\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

5 tháng 1 2022

Vì sao bước thứ 2 từ dưới lên lại có thể suy ra (a−b)(b−c)(a−c)/(a−b)(b−c)(a−c)=1?