Cho tam giác ABC cân tại A, \(\widehat{A}\)=20 độ .CMR \(a^2+b^2=3ab^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lý hàm cos vs \(\widehat{A}=20^0\)
\(\Rightarrow a^2=b^2+c^2-2bc.\cos20\)
\(\Leftrightarrow a^2=2b^2-2b^2.\cos20\)
\(\Leftrightarrow a^2=2b^2\left(1-\cos20\right)=2b^2.2\sin^210\)
\(\Leftrightarrow a^2=4b^2.\sin^210\Leftrightarrow a=2b.\sin10\)
Thay vào:
\(a^3+b^3=8b^3.\sin^310+b^3=b^3\left(8\sin^310+1\right)\)
lm đến đây là tắc r ạ :))
ra luôn này anh ơi :))
\(VT=b^3\left(8\sin^310+1\right)\)
\(VP=6\sin10.b^3\)
Vậy cần CM \(8\sin^310+1=6\sin10\)
\(\sin^310=\frac{3\sin10-\sin30}{4}\)
=> \(8\sin^310+1=2\left(3\sin10-\sin30\right)+1\)
\(=6\sin10-1+1=6\sin10=VP\)
Đề thi HSG lớp 9 tỉnh Bình Định năm học 2011 - 2012 - Tài liệu - Đề thi - Diễn đàn Toán học
Gọi Giang Hồ là đúng rồi. Cái đề cho vầy chả biết a, b ở đâu để mà làm nữa :(
Cho tam giác ABC cân tại A, có ∠A = 20◦ , độ dài BC = a, AC = AB = b. Chứng minh rằng a3 + b3 = 3ab2
Trần Minh Phong sao làm giống trong cho tam giac ABC, AB=AC=b,A=20,BC=a.CM:a3+b3= 3ab2? | Yahoo Hỏi & Đáp
Trên đường thẳng BC lấy D; E sao cho ∆ ADE đều (B ở giữa C và D). Gọi H là trung điểm BC và DE. Đặt AD = DE = x => BD = (DE -
BC)/2 = (x - a)/2; 2BH = BC => 4BH² = a²
Ta có : 3x² = 3AD² = 4AH² = 4(AB² - BH²) = 4b² - a²
Mặt khác dễ thấy AB là phân giác góc A của ∆ ADC nên ta có : AD/AC = BD/BC <=> x/b = (x - a)/2a <=> (b - 2a)x = ab <=> (b -
2a)²(3x²) = 3a²b² <=> (b - 2a)²(4b² - a²) = 3a²b² <=> b⁴ - a⁴ - 4ab³ + a³b + 3a²b² = 0
<=> (b - a)(a³ + b³ - 3ab²) = 0
<=> a³ + b³ - 3ab² = 0 (vì b > a)
<=> a³ + b³ = 3ab² (đpcm)
Anh ơi sai đề r ạ, nếu ko tin anh có thể thử lại, e đã phân tích ra nhưng 2 vế ko thể bằng nhau đc đâu ạ :))
Đề là a3+b3=3ab2