K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

Đok đề cứ thấy sai sai... Sao cho J lại thoả mãn \(\overrightarrow{BC}=\frac{1}{2}\overrightarrow{AC}-\frac{2}{3}\overrightarrow{AB}\) :))

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Dễ thấy: \(\overrightarrow {BC}  = \overrightarrow {BA}  + \overrightarrow {AC}  =  - \overrightarrow {AB}  + \overrightarrow {AC} \)

Ta có:

 +) \(\overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BD} \). Mà \(\overrightarrow {BD}  =  - \overrightarrow {DB}  =  - \frac{1}{3}\overrightarrow {BC} \)

\( \Rightarrow \overrightarrow {AD}  = \overrightarrow {AB}  + \left( { - \frac{1}{3}} \right)( - \overrightarrow {AB}  + \overrightarrow {AC} ) = \frac{4}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} \)

+) \(\overrightarrow {DH}  = \overrightarrow {DA}  + \overrightarrow {AH}  =  - \overrightarrow {AD}  + \overrightarrow {AH} \).

Mà \(\overrightarrow {AD}  = \frac{4}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} ;\;\;\overrightarrow {AH}  = \frac{2}{3}\overrightarrow {AB} .\)

\( \Rightarrow \overrightarrow {DH}  =  - \left( {\frac{4}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} } \right) + \frac{2}{3}\overrightarrow {AB}  =  - \frac{2}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} .\)

+) \(\overrightarrow {HE}  = \overrightarrow {HA}  + \overrightarrow {AE}  =  - \overrightarrow {AH}  + \overrightarrow {AE} \)

Mà \(\overrightarrow {AH}  = \frac{2}{3}\overrightarrow {AB} ;\;\overrightarrow {AE}  = \frac{1}{3}\overrightarrow {AC} \)

\( \Rightarrow \overrightarrow {HE}  =  - \frac{2}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} .\)

b)

Theo câu a, ta có: \(\overrightarrow {DH}  = \overrightarrow {HE}  =  - \frac{2}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} \)

\( \Rightarrow \) Hai vecto \(\overrightarrow {DH} ,\overrightarrow {HE} \) cùng phương.

\( \Leftrightarrow \)D, E, H thẳng hàng

12 tháng 5 2017

a) \(\overrightarrow{BI}=\overrightarrow{BC}+\overrightarrow{CI}=\overrightarrow{BC}+\dfrac{1}{4}\overrightarrow{CA}=\overrightarrow{BA}+\overrightarrow{AC}+\dfrac{1}{4}\overrightarrow{CA}\)
\(=\overrightarrow{BA}+\overrightarrow{AC}-\dfrac{1}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AC}+\overrightarrow{BA}=\dfrac{3}{4}\overrightarrow{AC}-\overrightarrow{AB}\).
b) Có \(\overrightarrow{BJ}=\dfrac{1}{2}\overrightarrow{AC}-\dfrac{2}{3}\overrightarrow{AB}=\dfrac{3}{2}\left(\dfrac{1}{2}\overrightarrow{AC}-\overrightarrow{AB}\right)=\dfrac{3}{2}\overrightarrow{BI}\).
Vì vậy 3 điểm B, I, J thẳng hàng.
c)
Trên cạnh AC lấy điểm K sao cho \(\overrightarrow{AK}=\dfrac{1}{2}\overrightarrow{AC}\).
Tại điểm K dựng điểm T sao cho \(\overrightarrow{KT}=-\dfrac{3}{2}\overrightarrow{AB}=\dfrac{3}{2}\overrightarrow{BA}\).
\(\overrightarrow{BJ}=\dfrac{1}{2}\overrightarrow{AC}-\dfrac{3}{2}\overrightarrow{AB}=\overrightarrow{AK}+\overrightarrow{KT}=\overrightarrow{AT}\).
Dựng điểm T sao cho \(\overrightarrow{BJ}=\overrightarrow{AT}\).
A B C K T J

 

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(\overrightarrow {AB} .\overrightarrow {AC}  = 2.3.\cos \widehat {BAC} = 6.\cos {60^o} = 3\)

b)

Ta có: \(\overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM} \)(do M là trung điểm của BC)

\( \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \)

+) \(\overrightarrow {BD}  = \overrightarrow {AD}  - \overrightarrow {AB}  = \frac{7}{{12}}\overrightarrow {AC}  - \overrightarrow {AB} \)

c) Ta có:

 \(\begin{array}{l}\overrightarrow {AM} .\overrightarrow {BD}  = \left( {\frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} } \right)\left( {\frac{7}{{12}}\overrightarrow {AC}  - \overrightarrow {AB} } \right)\\ = \frac{7}{{24}}\overrightarrow {AB} .\overrightarrow {AC}  - \frac{1}{2}{\overrightarrow {AB} ^2} + \frac{7}{{24}}{\overrightarrow {AC} ^2} - \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB} \\ =  - \frac{1}{2}A{B^2} + \frac{7}{{24}}A{C^2} - \frac{5}{{24}}\overrightarrow {AB} .\overrightarrow {AC} \\ =  - \frac{1}{2}{.2^2} + \frac{7}{{24}}{.3^2} - \frac{5}{{24}}.3\\ = 0\end{array}\)

\( \Rightarrow AM \bot BD\)

20 tháng 11 2019

a/ \(\overrightarrow{AC}=3\overrightarrow{AM};\overrightarrow{BN}=\frac{1}{2}\overrightarrow{BC}\)

\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}=\frac{1}{3}\overrightarrow{CA}+\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}\)

\(=\frac{1}{3}\overrightarrow{CB}+\frac{1}{3}\overrightarrow{CD}+\overrightarrow{DC}+\frac{1}{2}\overrightarrow{BC}=\frac{2}{3}\overrightarrow{DC}+\frac{1}{6}\overrightarrow{BC}=\frac{2}{3}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BA}+\frac{1}{6}\overrightarrow{AC}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}\)

Hmm, MN làm sao vuông góc vs BC đc. Nó chỉ vuông góc khi M là TĐ của AC thôi, bởi N là trung điểm của BC rồi mà, hại não :((

2/\(\overrightarrow{BK}=\frac{4}{13}\overrightarrow{BA}\Rightarrow\overrightarrow{BC}+\overrightarrow{CK}=\frac{4}{13}\overrightarrow{BC}+\frac{4}{13}\overrightarrow{CA}\)

\(\Leftrightarrow\overrightarrow{CK}=\frac{9}{13}\overrightarrow{CB}+\frac{4}{13}\overrightarrow{CA}\)

\(\overrightarrow{GB}+\overrightarrow{GM}+\overrightarrow{GN}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{GC}+\overrightarrow{CB}+\overrightarrow{GC}+\overrightarrow{CM}+\overrightarrow{GC}+\overrightarrow{CN}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{GC}+\overrightarrow{CB}+\overrightarrow{CN}+\overrightarrow{NM}+\overrightarrow{CN}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{GC}+\overrightarrow{CB}+2\overrightarrow{CN}+\frac{1}{2}\overrightarrow{BA}+\frac{1}{6}\overrightarrow{CA}=\overrightarrow{0}\)

Ta có : \(\overrightarrow{CN}=\frac{1}{2}\overrightarrow{CB}\Rightarrow3\overrightarrow{GC}+\overrightarrow{CB}+\overrightarrow{CB}+\frac{1}{2}\overrightarrow{BA}+\frac{1}{6}\overrightarrow{CA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{CG}=\frac{2}{3}\overrightarrow{CB}+\frac{1}{6}\overrightarrow{BA}+\frac{1}{18}\overrightarrow{CA}\)

\(\Leftrightarrow\overrightarrow{CG}=\frac{2}{3}\overrightarrow{CB}+\frac{1}{6}\overrightarrow{BC}+\frac{1}{6}\overrightarrow{CA}+\frac{1}{18}\overrightarrow{CA}\)

\(=\frac{1}{2}\overrightarrow{CB}+\frac{2}{9}\overrightarrow{CA}\)

\(\overrightarrow{CK}=\frac{18}{13}\overrightarrow{CG}\Rightarrow\) C,G,K thẳng hàng

23 tháng 11 2019

cảm ơn bạn

Chọn D

15 tháng 11 2021

\(a,\) \(\overrightarrow{IA}=2\overrightarrow{IB}-4\overrightarrow{IC}\)

\(\overrightarrow{IA}=2\overrightarrow{IB}-2\overrightarrow{IC}-2\overrightarrow{IC}=2\overrightarrow{CB}-2\overrightarrow{IC}\)

\(=2\left(\overrightarrow{AB}-\overrightarrow{AC}\right)-2\left(\overrightarrow{AC}-\overrightarrow{AI}\right)\)

\(\overrightarrow{IA}=2\overrightarrow{AB}-2\overrightarrow{AC}-2\overrightarrow{AC}+2\overrightarrow{AI}\)

\(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}\)

\(b,\overrightarrow{IJ}=\overrightarrow{AJ}-\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}=\dfrac{4}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(1\right)\)

\(\overrightarrow{JG}=\overrightarrow{AG}-\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{AM}-\dfrac{2}{3}\overrightarrow{AB}\)\((\) \(\) \(M\)  \(trung\) \(điểm\) \(BC)\)

\(\overrightarrow{JG}=\dfrac{\overrightarrow{AB}+\overrightarrow{AC}}{3}-\dfrac{2}{3}\overrightarrow{AB}=-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=-\dfrac{1}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\overrightarrow{IJ}=-4\overrightarrow{JG}\Rightarrow I,J,G\) \(thẳng\) \(hàng\)