K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\Leftrightarrow \frac{x+y}{xy}=\frac{1}{2}\Rightarrow \frac{xy}{2}=x+y\)

Áp dụng BĐT Cô-si: \(\frac{xy}{2}=x+y\geq 2\sqrt{xy}\)

\(\Leftrightarrow xy\geq 4\sqrt{xy}\Rightarrow \sqrt{xy}\geq 4\Rightarrow xy\geq 16\)

Do đó:

\(P^2=x+y+2\sqrt{xy}=\frac{xy}{2}+2\sqrt{xy}\geq \frac{16}{2}+2.4=16\)

\(\Rightarrow P\geq 4\)

Vậy GTNN của $P$ là $4$. Dấu "=" xảy ra khi \(x=y=4\)

20 tháng 12 2019

Nguyễn Linh Ch Thanks cô ạ,e thiếu + 2:(( ko hiểu sao dạo này e hay nhầm ạ:(

\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+2+\frac{1}{x^2y^2}\)

Đặt \(a=\frac{1}{x^2y^2}=\frac{1}{\left(xy\right)^2}\ge\frac{1}{\frac{\left(x+y\right)^4}{16}}=16\)

Ta có:

\(P=a+\frac{1}{a}+2=\left(\frac{1}{a}+\frac{a}{256}\right)+\frac{255a}{256}+2\)

Theo BĐT Cô-si ta có:

\(P\ge2\sqrt{\frac{1}{a}\cdot\frac{a}{256}}+\frac{255\cdot16}{256}+2=\frac{289}{16}\)

Dấu "=" xảy ra tại \(a=6\Rightarrow x=y=\frac{1}{2}\)

19 tháng 12 2019

\(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+2+\frac{1}{x^2y^2}\)

Đặt \(\frac{1}{x^2y^2}=a\)

Ta có:\(a=\frac{1}{x^2y^2}=\frac{1}{\left(xy\right)^2}\ge\frac{1}{\frac{\left(x+y\right)^4}{16}}\ge16\)

Khi đó:

\(P=a+\frac{1}{a}+2=\left(\frac{1}{a}+\frac{a}{256}\right)+\frac{255a}{256}\)

Theo BĐT Cô si ( từ nay bỏ AM-GM,thấy quê quê sao á ) ta có:

\(P\ge2\sqrt{\frac{1}{a}\cdot\frac{a}{256}}+\frac{255\cdot16}{256}=\frac{27}{16}\)

Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

7 tháng 12 2017

Ta có: P = \(P=\left(1+\frac{1}{x}\right)\left(1-\frac{1}{y}\right).\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\) (HĐT số 3)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{\left(x-1\right)\left(y-1\right)}{xy}\)

\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right).\frac{-x.-y}{xy}\)

= (1 + 1/x)(1 + 1/y) 
= 1 + 1/(xy) + (1/x + 1/y) = 1 + 1/(xy) + (x + y)/xy 
= 1 + 1/(xy) + 1/(xy) = 1 + 2/(xy) 
Áp dụng bđt: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
 \(\Rightarrow P\ge\frac{1+2}{\frac{1}{4}}=9\) 
Vậy PMin = 9 xảy ra \(\Leftrightarrow x=y=\) \(\frac{1}{2}\)

27 tháng 6 2016

bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng

28 tháng 6 2016

bài 1 sai đề