Bài 1: Rút gọn
a) \(\sqrt{13-2\sqrt{42}}\)
b) \(\sqrt{46+6\sqrt{5}}\)
c) \(\sqrt{12-3\sqrt{15}}\)
d) \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
e) \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\sqrt{\dfrac{3}{7}}\)
\(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{5}\)
\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}=\dfrac{2\left(\sqrt{8}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{8}\right)}=-\dfrac{2\sqrt{6}}{6}\)
`(sqrt 15 - sqrt 6)/(sqrt 35 - sqrt 14)`
`= (sqrt 3 . (sqrt 5 - sqrt 2))/(sqrt 7. (sqrt 5 - sqrt 2))`
`= sqrt3/sqrt 7`
`@ (sqrt 15 - sqrt 5)/(sqrt 3 - 1)`
`= (sqrt 5(sqrt 3 - 1))/(sqrt 3 - 1)`
`= sqrt5`
`@ (2 sqrt 8 - sqrt 12)/(sqrt18 - sqrt 48)`
`= (2(sqrt 8 - sqrt 3)/(sqrt 6(sqrt 3 - sqrt 8))`
`= (-2)/(sqrt 6) = (-2 sqrt 6)/6`
a: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
b: \(\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|\)
\(=3+\sqrt{5}+3-\sqrt{5}=6\)
c: \(\dfrac{3}{2\sqrt{3}+3}+\dfrac{3}{2\sqrt{3}-3}\)
\(=\dfrac{3\left(2\sqrt{3}-3\right)+3\left(2\sqrt{3}+3\right)}{12-9}\)
\(=2\sqrt{3}-3+2\sqrt{3}+3=4\sqrt{3}\)
d: \(\sqrt{\left(\sqrt{3}+4\right)\cdot\sqrt{19-8\sqrt{3}}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\sqrt{\left(4-\sqrt{3}\right)^2}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\cdot\left(4-\sqrt{3}\right)+3}\)
\(=\sqrt{16-3+3}=\sqrt{16}=4\)
e: \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
\(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3\left(3-\sqrt{6}\right)}{3}\)
\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=3-\dfrac{\sqrt{6}}{2}\)
D = (4\(\sqrt{10}\) - 4\(\sqrt{6}\) + 5\(\sqrt{6}\) - 3\(\sqrt{10}\) )\(\sqrt{4-\sqrt{15}}\)
D = (\(\sqrt{10}\) + \(\sqrt{6}\) )\(\sqrt{4-\sqrt{15}}\)
D = \(\sqrt{\left(4-\sqrt{15}\right)10}\) + \(\sqrt{\left(4-\sqrt{15}\right)6}\)
D = \(\sqrt{40-10\sqrt{15}}\) + \(\sqrt{24-6\sqrt{15}}\)
D = \(\sqrt{\left(\sqrt{15}\right)^2-2.5.\sqrt{5}+5^2}\) + \(\sqrt{\left(\sqrt{15}\right)^2-2.3.\sqrt{15}+3^2}\)
D = \(\sqrt{\left(\sqrt{15}-5\right)^2}\) + \(\sqrt{\left(\sqrt{15}-3\right)^2}\)
D = 5 - \(\sqrt{15}\) + \(\sqrt{15}\) - 3 = 2
Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)
=1
a)
\(A=\sqrt{26+15\sqrt{3}}=\sqrt{\frac{52+30\sqrt{3}}{2}}=\sqrt{\frac{27+25+2\sqrt{27.25}}{2}}\)
\(=\sqrt{\frac{(\sqrt{27}+\sqrt{25})^2}{2}}=\frac{\sqrt{27}+\sqrt{25}}{\sqrt{2}}=\frac{3\sqrt{3}+5}{\sqrt{2}}=\frac{3\sqrt{6}+5\sqrt{2}}{2}\)
b)
\(B\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7+1+2\sqrt{7}}-\sqrt{7+1-2\sqrt{7}}-2\)
\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{(\sqrt{7}-1)^2}-2=\sqrt{7}+1-(\sqrt{7}-1)-2=0\)
\(\Rightarrow B=0\)
c)
\(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{3+5+2\sqrt{3.5}}\)
\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{5}+\sqrt{3})^2}=(\sqrt{5}-\sqrt{3})-(\sqrt{5}+\sqrt{3})=-2\sqrt{3}\)
d)
\(D=(\sqrt{6}-2)(5+2\sqrt{6})\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(2+3+2\sqrt{2.3})\sqrt{2+3-2\sqrt{2.3}}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})^2\sqrt{(\sqrt{3}-\sqrt{2})^2}\)
\(=\sqrt{2}(\sqrt{3}-\sqrt{2})^2(\sqrt{3}+\sqrt{2})^2=\sqrt{2}[(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})]^2\)
\(=\sqrt{2}.1^2=\sqrt{2}\)
e)
\(E=(\sqrt{10}-\sqrt{2})\sqrt{3+\sqrt{5}}=(\sqrt{5}-1).\sqrt{2}.\sqrt{3+\sqrt{5}}\)
\(=(\sqrt{5}-1)\sqrt{6+2\sqrt{5}}=(\sqrt{5}-1)\sqrt{5+1+2\sqrt{5.1}}\)
\(=(\sqrt{5}-1)\sqrt{(\sqrt{5}+1)^2}=(\sqrt{5}-1)(\sqrt{5}+1)=4\)
f)
\(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-2\sqrt{20.9}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(\sqrt{20}-3)^2}}}=\sqrt{\sqrt{5}-\sqrt{3-(\sqrt{20}-3)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2}}=\sqrt{\sqrt{5}-(\sqrt{5}-1)}=\sqrt{1}=1\)
a) A = \(13-2\sqrt{42}=\left(\sqrt{7}-\sqrt{6}\right)^2\)
<=> \(\sqrt{A}=\sqrt{7}-\sqrt{6}\)
b) \(A=46+6\sqrt{5}=\left(\sqrt{45}+1\right)^2\)
<=> \(\sqrt{A}=\sqrt{45}+1\)
c) \(A=12-3\sqrt{15}=\dfrac{1}{2}\left(24-6\sqrt{15}\right)=\dfrac{1}{2}\left(\sqrt{15}-3\right)^2\)
<=> \(\sqrt{A}=\dfrac{1}{\sqrt{2}}\left(\sqrt{15}-3\right)\)
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
\(\sqrt{13-2\sqrt{42}}=\sqrt{6-2\sqrt{6}.\sqrt{7}+7}=\sqrt{\left(\sqrt{6}-\sqrt{7}\right)^2}=\left|\sqrt{6}-\sqrt{7}\right|=\sqrt{7}-\sqrt{6}\)
\(\sqrt{46+6\sqrt{5}}=\sqrt{45+6\sqrt{5}+1}=\sqrt{3^2.5+6\sqrt{5}+1}=\sqrt{3^2.5+2.3.\sqrt{5}+1^2}=\sqrt{\left(3.\sqrt{5}+1\right)^2}=3\sqrt{5}+1\)
\(\sqrt{12-3\sqrt{15}}=\sqrt{3}\sqrt{4-\sqrt{15}}=\sqrt{\frac{3}{2}}.\sqrt{8-2\sqrt{15}}=\sqrt{\frac{3}{2}}.\sqrt{3-2\sqrt{15}+5}=\sqrt{\frac{3}{2}}.\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{\frac{3}{2}}.\left(\sqrt{5}-\sqrt{3}\right)\)
\(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3-2\sqrt{15}+5}-\sqrt{8+2\sqrt{15}}=\sqrt{3-2\sqrt{3}\sqrt{5}+5}-\sqrt{3+2\sqrt{3}\sqrt{5}+5}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{5}=-2\sqrt{3}\)
\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\sqrt{\frac{1}{2}}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)=\sqrt{\frac{1}{2}}\left(\sqrt{1+2\sqrt{5}+5}-\sqrt{1-2\sqrt{5}+5}\right)=\sqrt{\frac{1}{2}}\left(\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\right)=\sqrt{\frac{1}{2}}\left(1+\sqrt{5}-\sqrt{5}+1\right)=\sqrt{\frac{1}{2}}.2=\sqrt{\frac{4}{2}}=\sqrt{2}\)