Tìm tất cả các số có 2 chữ số ab sao cho 2ab+1 và 3ab+1 đều là số chình phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do ab là số có 2 c/s => ab thuộc khoảng....
=> 2.10+1< 2ab+1< 2.99+1 => .....< 2ab+1<......
Mak 2ab+1 là số lẻ => 2ab+ 1 thuộc khoảng...
Lập bảng => ab
T lm xog lâu r mak trả lời lmj. T lm xog luôn 3 cách rồi :)). Đăng cho zui
10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
↔ n ∈{12;24;40;60;84}
↔ 3n+1∈{37;73;121;181;253}
↔ n=40
Vậy n=40
Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
3n⋮8
n⋮8 (1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
n⋮5 (2)
Từ (1) và (2)n⋮40
Vậy n=40k thì ...
Ta có : \(10\le ab\le99\Leftrightarrow21\le2ab+1\le201\)
\(2ab+1\) là số chính phương lẻ nên :
\(2ab+1\in\left\{25,49,81,121,169\right\}\)
\(\Leftrightarrow ab\in\left\{12,24,40,60,84\right\}\)
\(\Leftrightarrow3ab+1\in\left\{37,73,121,181,253\right\}\)
\(\Leftrightarrow ab=40\)
Vậy: \(ab=40\)
Ta có : 10≤ab≤99⇔21≤2ab+1≤20110≤ab≤99⇔21≤2ab+1≤201
2ab+12ab+1 là số chính phương lẻ nên :
2ab+1∈{25,49,81,121,169}2ab+1∈{25,49,81,121,169}
⇔ab∈{12,24,40,60,84}⇔ab∈{12,24,40,60,84}
⇔3ab+1∈{37,73,121,181,253}⇔3ab+1∈{37,73,121,181,253}
⇔ab=40⇔ab=40
Vậy: ab=40