Giải phương trình nghiệm nguyên dương sau:
\(19^x+5^y+1890=1974^{4^{30}}+2013\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi phương trình ax2 + bx + c = 0 có a và c trái dấu thì ac < 0, suy ra –ac > 0; hơn nữa b2 ≥ 0. Do đó ∆ = b2 – 4ac > 0. Vậy phương trình có hai nghiệm phân biệt.
Áp dụng:
a) Phương trình 15x2 + 4x – 2005 = 0 có a = 15, c = -2005 trái dấu nhau nên phương trình có hai nghiệm phân biệt.
b) Phương trình x2 - √7x + 1890 = 0 có a = và c = 1890 trái dấu nhau nên phương trình có hai nghiệm phân biệt.
a)
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | \(\sqrt{22}\)(loại | \(2\sqrt{7}\)(loại) | \(\sqrt{46}\)(loại) | 10(thoả mãn) | \(\sqrt{262}\) |
\(\Rightarrow\left(x,y\right)=\left(4;10\right)\)
Do 1974 chia 4 dư 2
=> \(1974^{4^{30}}⋮4\)=> \(1974^{4^{30}}+2013\)chia 4 dư 3
+ x lẻ
=> \(\left(19^x+1\right)⋮\left(19+1\right)=20⋮4\)
Lại có \(\left(5^y-1\right)⋮\left(5-1\right)=4\)
1890 chia 4 dư 2
=> \(19^x+5^y+1890\)chia 4 dư 2( loại vì VP chia 4 dư 3)
+ \(x\)chẵn Đặt \(x=2k\)
=> \(19^x=19^{2k}=361^k\)
=> \(19^x-1=\left(361^k-1\right)⋮\left(361-1\right)⋮4\)
Lại có \(5^y-1⋮4\)
=> \((19^x+5^y-2)⋮4\)
=> \(\left(19^x+5^y+1890\right)⋮4\)(loại vì VP chia 4 dư 3)
=> PT vô nghiệm
Vậy PT vô nghiệm