Cho tam giác ABC cân ở A,có Ax là tia đối của AB.
a)Chứng minh:Góc CAx = 2 lần góc ABC
b)Vẽ phân giác Ay của góc xAC.Hãy so sánh góc xAy và ABC
c) Chứng minh:Ay//BC.
d) Kẻ tia phân giác AD của góc BAC(D nằm trên BC). CMR:AD vuông góc với Ay, AD vuông góc với BC.
kẻ Ay // với BC
=> góc yAC = góc ACB (2 góc so le trong)
và góc xAy = góc ABC (2 góc đồng vị)
mà tam giác ABC cân tại A (gt) => góc ABC = góc ACB (tc)
=> góc xAy = góc yAC = góc ABC
mà góc xAy + góc yAC = góc CAx
=> góc ABC + góc yAC = góc CAx
=> góc ABC.2 = góc CAx (đpcm)
b, ở câu a hết rồi
c, cũng câu a
d, xét tam giác ABD và tam giác ACD có : AD chung
góc BAD = góc CAD do AD là phân giác (gt)
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác ABD = tam giác ACD (C-g-c)
=> góc ADB = góc ADC (đn)
mà góc ADB + góc ADC = 180 (kb)
=> góc ADB = 180 : 2 = 90
=> AD _|_ BC (đn)
+ góc xAy = góc CAy (câu a)
góc ABD = góc ACD (cmt)
mà góc xAy + góc CAy + góc ABD + góc ACD = 180
=> 2.góc CAy + 2.góc ACD = 180
=> 2(góc CAy + góc ACD) = 180
=> góc CAy + góc ACD = 90
mà góc CAy + góc ACD = DAy
=> góc DAy = 90
=> AD _|_ BC