K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 8 2020

6.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)

\(\Leftrightarrow-3sin^22x+sin2x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

NV
8 tháng 8 2020

5.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)

\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)

\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)

\(\Leftrightarrow sin^22x=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)

NV
4 tháng 2 2021

\(sinx+cosx=m\Leftrightarrow\left(sinx+cosx\right)^2=m^2\)

\(\Leftrightarrow1+2sinx.cosx=m^2\Rightarrow sinx.cosx=\dfrac{m^2-1}{2}\)

\(A=sin^2x+cos^2x=1\)

\(B=sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)

\(=m^3-\dfrac{3m\left(m^2-1\right)}{2}=\dfrac{2m^3-3m^3+3m}{2}=\dfrac{3m-m^3}{2}\)

\(C=\left(sin^2+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1-2\left(\dfrac{m^2-1}{2}\right)^2\)

\(D=\left(sin^2x\right)^3+\left(cos^2x\right)^3=\left(sin^2x+cos^2x\right)^3-3\left(sin^2x+cos^2x\right)\left(sinx.cosx\right)^2\)

\(=1-3\left(\dfrac{m^2-1}{2}\right)^2\)

\(M=\sin^6x+\cos^6x\)(1)

Có công thức: \(y=\sin^{2n}x+\cos^{2n}x\)

\(\Rightarrow\max\limits_y=1;\min\limits_y=\dfrac{1}{2^{n-1}}\)

\(\Rightarrow\left(1\right)\)\(\max\limits_M=1\)\(\min\limits_M=\dfrac{1}{2^2}=\dfrac{1}{4}\)

26 tháng 9 2020

Hỏi đáp Toán

31 tháng 7 2021

\(P=sin^{10}x+cos^{10}x-\dfrac{sin^6x+cos^6x}{sin^22x+4cos^22x}\)

\(=sin^{10}x+cos^{10}x-\dfrac{\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)}{4-3sin^22x}\)

\(=sin^{10}x+cos^{10}x-\dfrac{1-\dfrac{3}{4}sin^22x}{4-3sin^22x}\)

\(=sin^{10}x+cos^{10}x-\dfrac{1}{4}\)

\(\le sin^2x+cos^2x-\dfrac{1}{4}=\dfrac{3}{4}\)

\(maxP=\dfrac{3}{4}\Leftrightarrow\left\{{}\begin{matrix}sin^{10}x=sin^2x\\cos^{10}x=cos^2x\end{matrix}\right.\Leftrightarrow x=\dfrac{k\pi}{2}\)

NV
8 tháng 1

Hàm xác định trên R khi và chỉ khi:

\(sin^4x+cos^4x+4sinx.cosx+m-5\ge0;\forall m\)

\(\Leftrightarrow sin^4x+cos^4x+4sinx.cosx-5\ge-m;\forall m\)

\(\Leftrightarrow-m\le\min\limits_{x\in R}f\left(x\right)\)

Với \(f\left(x\right)=sin^4x+cos^4x+4sinx.cosx-5\)

Ta có:

\(f\left(x\right)=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+4sinx.cosx-5\)

\(=-\dfrac{1}{2}\left(2sinx.cosx\right)^2+2sin2x-4\)

\(=-\dfrac{1}{2}sin^22x+2sin2x-4\)

\(=\dfrac{1}{2}\left(-sin^22x+4sin2x+5\right)-\dfrac{13}{2}\)

\(=\dfrac{1}{2}\left(5-sin2x\right)\left(sin2x+1\right)-\dfrac{13}{2}\ge-\dfrac{13}{2}\) do \(-1\le sin2x\le1\)

\(\Rightarrow\min\limits_{x\in R}f\left(x\right)=-\dfrac{13}{2}\Rightarrow m\ge\dfrac{13}{2}\)

8 tháng 1

Anh làm cách dễ gọn quá anh ạ! Có mấy bài từ đầu năm phải dùng tới bảng biến thiên xét đến 3, 4 trường hợp anh ạ

NV
17 tháng 9 2021

Hàm xác định trên R khi với mọi x ta có:

\(sin^6x+cos^6x+m.sinx.cosx>0\)

\(\Leftrightarrow1-\dfrac{3}{4}sin^22x+\dfrac{m}{2}sin2x>0\)

\(\Leftrightarrow3sin^22x-2m.sin2x-4< 0\)

Đặt \(sin2x=t\in\left[-1;1\right]\Rightarrow3t^2-2mt-4< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3.f\left(-1\right)< 0\\3.f\left(1\right)< 0\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2m-1< 0\\-2m-1< 0\end{matrix}\right.\)

\(\Rightarrow-\dfrac{1}{2}< m< \dfrac{1}{2}\)

NV
26 tháng 9 2020

\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=1-3sin^2x.cos^2x=1-\frac{3}{4}sin^22x\)

Do \(0\le sin^22x\le1\Rightarrow\frac{1}{4}\le y\le1\)

\(y_{min}=\frac{1}{4}\) khi \(sin^22x=1\)

\(y_{max}=1\) khi \(sin^22x=0\)

26 tháng 9 2020

Hỏi đáp Toán