tính tổng E= 3+3^2+3^3+3^4+....+3^2019
G=4^10+4^11+4^12+4^13+...+4^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 1 + 2 + 3 + ... + 2008
\(A=\frac{\left(2008+1\right)\left[\left(2008-1\right)\div1+1\right]}{2}\)
\(A=\frac{2009.2008}{2}\)
\(A=2017036\)
Ta có: B = 1 + 2 + 3 + ... + 1010
\(B=\frac{\left(1010+1\right)\left[\left(1010-1\right):1+1\right]}{2}\)
\(B=\frac{1011.1010}{2}\)
\(B=510555\)
\(A=1+2+3+4+5+...+2008\)
\(A=\left(2008+1\right)\left(\left(2008-1\right):1+1\right):2=2009.2008:2\)
\(=2009.1004=2017036\)
\(B=1+2+3+4+...+1010\)
\(B=\left(1010+1\right)\left(\left(1010-1\right):1+1\right):2=1011.\left(1010:2\right)\)
\(=1011.505=510555\)
\(C=2+5+8+11+...+302\)
\(C=\left(302+2\right)\left(\left(302-2\right):3+1\right):2=304.101:2\)
\(=15352\)
\(D=3+3^2+3^3+3^4+...+3^{2019}\)
\(3D=3^2+3^3+3^4+...+3^{2020}\)
\(3D-D=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+3^4+...+3^{2019}\right)\)
\(2D=3^{2020}-3\)
\(\Rightarrow D=\frac{3^{2020}-3}{2}\)
\(E=4^{10}+4^{11}+4^{12}+...+4^{100}\)
\(4E=4^{11}+4^{12}+4^{13}+...+4^{101}\)
\(4E-E=\left(4^{11}+4^{12}+4^{13}+...+4^{101}\right)-\left(4^{10}+4^{11}+4^{12}+...+4^{100}\right)\)
\(3E=4^{101}-4^{10}\)
\(E=\frac{4^{101}-4^{10}}{3}\)
1)C= 1/5+1/10+1/20+1/40+...+1/1280
\(=\frac{1}{5}\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
Đặt cái trong ngoặc là A ta có:\(2A=2+1+...+\frac{1}{2^7}\)
\(2A-A=\left(2+1+...+\frac{1}{2^7}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)\)
\(A=2-\frac{1}{2^8}\).Thay A vào ta được:\(C=\frac{1}{5}\left(2-\frac{1}{2^8}\right)=\frac{1}{5}\cdot\frac{511}{256}=\frac{511}{1280}\)
2)D= 2/1*3+2/3*5+2/5*10+2/7*9+2/9*11+2/11*18+2/13*15
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\)
\(=1-\frac{1}{15}\)
\(=\frac{14}{15}\)
3)E= 4/3*7+4/7*11+4/11*15+4/15*19+4/19*23+4/23*27
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}\)
\(=\frac{8}{27}\)
4)G= 1/2+1/6+1/12+1/20+1/30+1/42+...+1/110
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
5)H= 3/1*2+3/2*3+3/3*4+3/4*5+...+3/9*10
\(=3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=3\left(1-\frac{1}{10}\right)\)
\(=3\times\frac{9}{10}\)
\(=\frac{27}{10}\).Lần sau bạn đăng ít một thôi nhé
d ( 1-1/2)x(1-1/3)x(1-1/4)x......x(1-1/2018)
= 1/2x2/3x3/4x...x2017/2018
=\(\frac{1x2x3x....x2017}{2x3x4x....x2018}\)
= \(\frac{1}{2018}\)
e , 1+4+7+...+100
= dãy có số số hạng là
(100-1):3+1=34 ( số số hạng)
tổng là : (100+1 ) x 34 : 2 =1717
=>1717
A=(2+3+...+13)-(1+2+...+12)=2+3+...+13-1-2-...-12=(13-1)+(2-2)+(3-3)+...+(12-12)=12
A)(-4)*5+15 H)(-4)*4+5*(-10) O) (-5) * (-3) +(-4)^2
= (-20)+15 = -16 + (-15) = 15 + 16
= -5 = -31 = 31
B)(-32)+(-5) * 7 i)99 * (-5)-11*(-7) F) (-1)^3 +(-2) *(-3)
= (-32) + (-35) =-495 - (-77) = -1 + 6
= -67 = -572 = 5
C)(-5) * 2 + (-6) *4 k) (-4)*2+(-2)+12 Q) (-11) * (-4) - (-8 * 5)
= (-10) + (-24) =4 * (-2) + (-2) +12 = 44 + 40
= -34 = (-2) *(4 +12) = 84
D)119-(-14) *10 = (-2) * 16 S) 100 - (-15) * 2
= 119 + 140 = -72 = 100 + 30
=259 L) (-32) +(-15) * (-3) = 130
E)112+(-11)*4 = (-32)+ 45
=112 + (-40) = 13
=72 M) (-12) *3 + (-6) * 5
G)(-22)+ (-2) *6 = -36 + (-30)
= (-22) + (-12) =-66
= -34 N) 100- (-14) * (-3)
=100 + (-42)
= 58
\(E=3+3^2+3^3+...+3^{2019}\)
\(3E=3^2+3^3+3^4+..+3^{20}+3^{21}\)
\(3E-E=3^{21}-3\)
\(2E=3^{21}-3\)
\(E=\frac{3^{21}-3}{2}\)
G tương tự