x+(x+1)+(x+2)+(x+3)+...(x+2003)=2004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x+(x+1)+(x+2)+(x+3)+...+2003=2003
x+(x+1)+(x+2)+(x+3)+...+2003=2003
X+(x+1)+(x+2)+(x+3)+...+2002=0
( Vì ta thấy đây là tổng của một dãy số các số hạng liên tiếp nên day tren co so cuoi la 2002 va tong tat ca bang 0 vi 2003-2003=0 ma)
Goi so so hang cua day so tren la n(nkhac 0)
Suy ra ta co ((2002+x).n):2=0
suy ra (2002+x).n=0
Mà n khác 0
Suy ra 2002+x=0
x=0-2002
x=-2002
Vay x=-2002
Cậu b bạn làm tương tự nhé!
Neu to co lam sai thi ban thong cam nhe!
Ta có :
\(\frac{x+3}{2003}+\frac{x+2}{2004}+\frac{x+1}{2005}=-3\)
\(\Leftrightarrow\)\(\left(\frac{x+3}{2003}+1\right)\left(\frac{x+2}{2004}+1\right)\left(\frac{x+1}{2005}+1\right)=-3+3\)
\(\Leftrightarrow\)\(\frac{x+2006}{2003}+\frac{x+2006}{2004}+\frac{x+2006}{2005}=0\)
\(\Leftrightarrow\)\(\left(x+2006\right)\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)=0\)
Vì \(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\ne0\)
Nên \(x+2006=0\)
\(\Rightarrow\)\(x=-2006\)
Vậy \(x=-2006\)
Chúc bạn học tốt ~
b phép cộng có tính chất giao hoán
x + ( x+ 1) +..........................+ 2003+2004 = 2004
x+(x+1) +...............................+2003 = 0 (1)
Gọi số số hạng của vế trái là a ( vế trái là phần gạch chân ) ( a thuộc N sao )
Ta có : (1) = [ ( x +2003). a ] :2 =0
=[ ( x+ 2003).a] =0
mà a thuộc N sao
nên x + 2003=0
x = -2003
\(\left(x-\frac{1}{2004}\right)+\left(x-\frac{2}{2003}\right)-\left(x-\frac{3}{2002}\right)=x-\frac{4}{2001}\)
\(x-\frac{1}{2004}+x-\frac{2}{2003}-x+\frac{3}{2002}-x=-\frac{4}{2001}\)
\(x+x-x-x-\frac{1}{2004}-\frac{2}{2003}+\frac{3}{2002}=-\frac{4}{2001}\)
\(0x-\frac{1}{2004}-\frac{2}{2003}+\frac{3}{2002}=-\frac{4}{2001}\)
\(\Rightarrow\) Vô lý
Vậy \(x\in\phi\)
\(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)
\(\Rightarrow\frac{x-1}{2004}-1+\frac{x-2}{2003}-1=\frac{x-3}{2002}-1+\frac{x-4}{2001}-1\)
\(\Rightarrow\frac{x-2005}{2004}+\frac{x-2005}{2003}=\frac{x-2005}{2002}+\frac{x-2005}{2001}\)
\(\Rightarrow\frac{x-2005}{2001}+\frac{x-2005}{2002}-\frac{x-2005}{2003}-\frac{x-2005}{2004}=0\)
\(\Rightarrow\left(x-2005\right).\left(\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)
Vì \(\frac{1}{2001}>\frac{1}{2003};\frac{1}{2002}>\frac{1}{2004}\)
\(\Rightarrow\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\ne0\)
\(\Rightarrow x-2005=0\)
\(\Rightarrow x=2005\)
<=> 2004x + (2003+1)x2003;2=2004
<=> 2004x = -2005002
<=> x= -1000,5
\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+2003\right)=2004\)
\(\Leftrightarrow x\times2003+\left(1+2+3+...+2003\right)=2004\)
\(\Leftrightarrow2003x+\frac{\left(1+2003\right)2003}{2}=2004\)
\(\Leftrightarrow2003\left(x+1002\right)=2004\)
\(x+1002=\frac{2004}{2003}\)
\(x=\frac{2004-2007006}{2003}=\frac{2005002}{2003}\)