41-2^x+1=9
2^x+1-2x=32
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x-36:18=12-15\\ \Rightarrow x-2=-3\\ \Rightarrow x=-1\\ b,92-\left(17+x\right)=72\\ \Rightarrow17+x=20\\ \Rightarrow x=3\\ c,720:\left[41-\left(2x+5\right)\right]=40\\ \Rightarrow41-\left(2x+5\right)=18\\ \Rightarrow2x+5=23\\ \Rightarrow2x=18\\ \Rightarrow x=9\\ d,\left(x+2\right)^3-23=41\\ \Rightarrow\left(x+2\right)^3=64\\ \Rightarrow\left(x+2\right)^3=4^3\\ \Rightarrow x+2=4\\ \Rightarrow x=2\)
a) 58.57+58.150-58.125
=58.(57+150-125)
=58. 82
= 4756
b)32.5-22.7+83.20190
=9.5-4.7+83
=45-28+83
=100
c)2019+(-247)+(-53)-2019
=(2019-2019)+[ (-247)+(-53)]
0+(-300)
= -300
d)13.70-50 [(19-32):2+23]
=13.70-50[10:2+8]
=13.70-50.13
=13.(70-50)
=13.20
=260
2.
a)x-36:18=12-5
x-36:18=6
x-36=6.18
x-36=108
x=108+36
x= 144
b)92-(17+x)=72
17+x=92-72
17+x=20
x=20-17
x=3
c)720:[41-(2x+5)]=40
41-(2x+5)=720:40
41-(2x+5)= 18
2x+5=41-18
2x+5=23
2x=23-5
2x=18
x=18:2
x=9
d) (x+2)3 -23=41
(x+2)3 =41+23
(x+2)3 =64
=> (x+2)3 =43
=>x+2=4
=>x=4-2
=>x=2
`#040911`
`a)`
\(\left(2x-1\right)^2-\left(2x+5\right)\left(2x+1\right)=10\)
\(\Leftrightarrow 4x^2 - 4x + 1 - (4x^2 + 12x + 5) = 10 \\ \Leftrightarrow 4x^2 - 4x + 1 - 4x^2 - 12x - 5 = 10 \\ \Leftrightarrow (4x^2 - 4x^2) - (4x + 12x) + (1 - 5) = 10 \\ \Leftrightarrow -16x - 4 = 10 \Leftrightarrow -16x = 10 + 4 \\ \Leftrightarrow -16x = 14 \\ \Leftrightarrow x = \dfrac{-7}{8}\)
Vậy, `x = -7/8`
`b)`
`9^2(x - 1) + 25(1 - x) = 0`
`<=> 9^2(x - 1) - 25(x - 1) = 0`
`<=> (x - 1)(9^2 - 5^2) = 0`
`<=>`\(\left[{}\begin{matrix}x-1=0\\9^2-5^2=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=1\\56=0\left(\text{vô lý}\right)\end{matrix}\right.\)
Vậy, `x = 1`
`c)`
`x^2+3x - 4 = 0`
`<=> x^2 + 4x - x - 4 = 0`
`<=> (x^2 - x) + (4x - 4) = 0`
`<=> x(x - 1) + 4(x - 1) = 0`
`<=> (x + 4)(x - 1) = 0`
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\\ \text{Vậy, }x\in\left\{-4;1\right\}\)
a: =>4x^2-4x+1-(4x^2+2x+10x+5)=10
=>4x^2-4x+1-10-4x^2-12x-5=0
=>-16x-4=0
=>x=-1/4
b: =>(x-1)(9^2-25)=0
=>x-1=0
=>x=1
c: =>x^2+4x-x-4=0
=>(x+4)(x-1)=0
=>x=1 hoặc x=-4
1)
\(4x^2-4x+1-4x^2-16x-16=9\)
\(-20x-15=9\)
-20x=24
x=-1,2
3)
(2x+1)2=52
2x+1=5
2x=4
x=2
\(1,\Rightarrow4x^2-4x+1-4x^2-16x-16=9\\ \Rightarrow-20x=23\Rightarrow x=-\dfrac{23}{20}\\ 2,\Rightarrow9x^2-6x+1+2x+6+11-11x^2=15\\ \Rightarrow2x^2+4x-3=0\\ \Rightarrow2\left(x^2+2x+1\right)-5=0\\ \Rightarrow2\left(x+1\right)^2-5=0\\ \Rightarrow\left[\sqrt{2}\left(x+1\right)-\sqrt{5}\right]\left[\sqrt{2}\left(x+1\right)+\sqrt{5}\right]=0\\ \Rightarrow\left[{}\begin{matrix}\sqrt{2}\left(x+1\right)=\sqrt{5}\\\sqrt{2}\left(x+1\right)=-\sqrt{5}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x+1=\sqrt{\dfrac{5}{2}}=\dfrac{\sqrt{10}}{2}\\x+1=-\sqrt{\dfrac{5}{2}}=\dfrac{-\sqrt{10}}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{2}\\x=\dfrac{-\sqrt{10}-2}{2}\end{matrix}\right.\)
\(3,\Rightarrow\left(2x+1\right)^2-25=0\Rightarrow\left(2x+1-5\right)\left(2x+1+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
\(4,\Rightarrow x^3+3x^2+3x+1-x^3-2x^2-2x+1-x^2=15\\ \Rightarrow x+2=15\Rightarrow x=13\)
`#040911`
`a)`
`(2x - 1)^2 - (2x + 5)(2x + 1) = 10`
`\Leftrightarrow 4x^2 - 4x + 1 - (4x^2 + 12x + 5) = 10`
`\Leftrightarrow 4x^2 - 4x + 1 - 4x^2 - 12x - 5 = 10`
`\Leftrightarrow (4x^2 - 4x^2) - (4x + 12x) + (1 - 5) = 10`
`\Leftrightarrow -16x - 4 = 10`
`\Leftrightarrow -16x = 10 + 4`
`\Leftrightarrow -16x = 14`
`\Leftrightarrow x = \dfrac{-7}{8}`
Vậy, `x= \dfrac{-7}{8}`
`b)`
`9^2(x - 1) + 25(1 - x) = 0`
`\Leftrightarrow 9^2(x - 1) - 25(x - 1) = 0`
`\Leftrightarrow (x - 1)(9^2 - 25) = 0`
`\Leftrightarrow`\(\left[{}\begin{matrix}x-1=0\\9^2-5^2=0\end{matrix}\right.\)
`\Leftrightarrow`\(\left[{}\begin{matrix}x=1\\\left(9-5\right)\left(9+5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\4\cdot14=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\56=0\left(\text{vô lý}\right)\end{matrix}\right.\\ \text{Vậy, x = 1}\)
`c)`
\(x^2+3x-4=0\)
`\Leftrightarrow x^2 + 4x - x - 4 = 0`
`\Leftrightarrow (x^2 - x) + (4x - 4) = 0`
`\Leftrightarrow x(x - 1) + 4(x - 1) = 0`
`\Leftrightarrow (x + 4)(x - 1) = 0`
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\\ \text{ Vậy, }x\in\left(-4;1\right)\)
ĐKXĐ:...
a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)
\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)
Pt trở thành:
\(3a^2-2b^2+ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow3a=2b\)
\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
Phương trình trở thành:
\(a^2+2+ab=3a+b\)
\(\Leftrightarrow a^2-3a+2+ab-b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow...\)
b, 92 : 4 - 27 = \(\dfrac{x+350}{x}\) + 315
23 - 27 = 1 + \(\dfrac{350}{x}\) + 315
316 + \(\dfrac{350}{x}\) = -4
\(\dfrac{350}{x}\) = - 316 - 4
\(\dfrac{350}{x}\) = -320
-320 \(x\) = 350
\(x\) = 350: (-320)
\(x\) = - \(\dfrac{35}{32}\) (loại)
Vậy \(x\) \(\in\) \(\varnothing\)
c, 720 : [ 41 - (2\(x\) - 5)] = 23.5
41 - (2\(x\) - 5) = 720 : (23.5)
41 - 2\(x\) + 5 = 18
46 - 2\(x\) =18
2\(x\) = 46 - 18
2\(x\) = 28
\(x\) = 28: 2
\(x\) = 14
Vậy \(x\) = 14
1) 41 - 2x + 1 = 9
-2x + 1 = 9 - 41
-2x + 1 = -32
2x + 1 = 32
2x + 1 = 25
x + 1 = 5
x = 5 - 1
x = 4
\(41-2^x+1=9\)
\(41-2^x=9-1=8\)
\(2^x=41-8=33\)
\(x=\sqrt{33}\)