CMR: 10^n-36n-1 chia hết cho 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 10n - 36n - 1 = 999...9 (có n c/s 9) + 1 - 36n - 1
= 999...9 - 36n
= 9.111....1 - 9.4n
= 9.(111....1 - 4n)
Xét: 111....1 - 4n = 111...1 - n - 3n
=> 111....1 - n chia hết cho 3
=> 111...1 - n - 3n chia hết cho 3
=> 111....1 - 4n chia hết cho 3
=> 9.(111....1 - 4n) chia hết cho 27
Vậy 10n - 36n - 1 chia hết cho 27
a)10^n-36n-1=10^n-1-36n
=100...0-1-36n
=99..99-36n
Mà 10^n-36n-1 chia hết cho 27=>10^n-36n-1 chia hết cho 9
Do :99..99 chia hết cho 9
36n=9.4.n chia hết cho 9
=>10^n-36n-1 chia hết cho 27
Vậy 10^n-36n-1 chia hết cho 27(đpcm)
b)1111...111 chia hết cho 27
=>111..111 chia hết chia hết cho 9
Do 11..1 có tổng các chữ số là 27 nên=>11..11 chia hết cho 9=>11..111 chia hết cho 27
Vậy 11.11 chia hết cho 27(đpcm)
a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\) vì \(5⋮5\) (1)
và \(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)
Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)
b, \(n^3\left(n^2-7\right)-36n\)
\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)
\(=n\left[\left(n^3-7n\right)^2-36\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)
10^n - 9n - 1 chia hết cho 27 (*)
Sử dụng phương pháp quy nạp.
- Với n = 1, ta có 10^1 - 9x1 -1 = 0, chia hết cho 27.
- Giả sử (*) đúng với n = k (thuộc N*), tức là:
10^k - 9k - 1 chia hết cho 27
- Ta cần chứng minh (*) cũng đúng với cả n = k + 1, tức là:
10^(k+1) - 9(k+1) - 1 chia hết cho 27.
Thật vậy:
10^(k+1) - 9(k+1) - 1 = 10 x 10^k - 9k - 10 = 10 x (10^k - 9k -1) + 81k
10^k - 9k - 1 chia hết cho 27, nên lượng này nhân 10 lên cũng chia hết cho 27.
81 chia hết cho 27, nên 81k chia hết cho 27.
Vậy (*) đúng với mọi n thuộc N* (đpcm).
a,\(10^n+18n-1\)
\(=99...9+18n\)(n-1 chữ số 9)
Mà \(99..9⋮9;18n⋮9\)lại có \(999..9⋮3;18n⋮3\)
\(\Rightarrow999..9+18n⋮\left(3.9\right)\)
\(\Rightarrow10^n+18n-1⋮27\)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
tick xong mình giải cho
Ta có: 10^n + 18n - 1
= (10^n - 1) + 18n
= 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1)
= 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.
Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3
=> 11...1 (n chữ số 1) - n chia hết cho 3
=> A chia hết cho 3
=> 9.A chia hết cho 27
Vay 10^n + 18n - 1 chia hết cho 27 (đpcm)