Tìm max:
D= -x2 +3x-1
E= -3x2 +4x+2
F= 6x - 7x2 -2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(4x^2-3x+7x^2+2x-5\)
\(11x^2-3x+2x-5\)
\(11x^2-x-5\)
B = \(3x+7y-6x-8+y-2\)
\(3x+7y-6x-10+y\)
\(- 3x+7y-10+y\)
\(3x+8y-10\)
C = chịu
D= \(6x^4-3x^2+x^2-4x+3.4-x+2\)
\(6x^4-3x^2+x^2-4x;12-x+2\\ \)
\(6x^4-3x^2+x^2-4x+14-x\)
\(6x^4-2x^2-4x+14-x\)
\(6x^4-2x^2-5x+14\)
\(a,=\left(x-2\right)^2\\ b,=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\\ c,=\left(1-2x\right)\left(1+2x+4x^2\right)\\ d,=\left(x+1\right)^3\\ e,Sửa:\left(x+y\right)^2-9x^2=\left(x+y-3x\right)\left(x+y+3x\right)\\ =\left(y-2x\right)\left(4x+y\right)\\ f,=\left(x+3\right)^2\\ g,=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\\ h,=8\left(x^3-\dfrac{1}{64}\right)=8\left(x-\dfrac{1}{4}\right)\left(x^2+\dfrac{1}{4}x+\dfrac{1}{16}\right)\)
a) \(\left(x-2\right)^2\)
b) \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
c) \(\left(1-2x\right)\left(1+2x+4x^2\right)\)
d) \(\left(x+1\right)^3\)
e) \(\left(x+y-3\sqrt{x}\right)\left(x+y+3\sqrt{x}\right)\)
f) \(\left(x+3\right)^2\)
g) \(-\left(x-5\right)^2\)
h) \(\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
\(a,=4x^2+3xy-y^2+4xy-4x^2=7xy-y^2\\ b,=x^2-9-x^3+3x+x^2-3=-x^3+2x^2+3x-12\\ c,=-2x^2+12x-18+5x^2+4x-1=3x^2+16x-19\\ d,=8x^3+1-3x^3+6x^2=5x^3+6x^2+1\\ e,=\left(3x^2+4x+15x+20\right):\left(3x+4\right)\\ =\left(3x+4\right)\left(x+5\right):\left(3x+4\right)\\ =x+5\\ f,=\left(x^3+4x^2-3x+3x^2+12x-9+3x+3\right):\left(x^2+4x-3\right)\\ =\left[\left(x^2+4x-3\right)\left(x+3\right)+3x+3\right]:\left(x^2+4x-3\right)\\ =x+3\left(dư.3x+3\right)\)
e: ta có: \(4x^2+4x-6=2\)
\(\Leftrightarrow4x^2+4x-8=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
f: Ta có: \(2x^2+7x+3=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(a,\Leftrightarrow x\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\\ b,\Leftrightarrow x\left(x-25\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=25\end{matrix}\right.\\ c,\Leftrightarrow x\left(7x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{7}\end{matrix}\right.\\ d,\Leftrightarrow\left(x-2007\right)\left(4x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2007\\x=\dfrac{1}{4}\end{matrix}\right.\)
`@` `\text {Ans}`
`\downarrow`
`1.`
\(\left(-4xy\right)\cdot\left(2xy^2-3x^2y\right)\)
`=`\(\left(-4xy\right)\left(2xy^2\right)+\left(-4xy\right)\left(-3x^2y\right)\)
`=`\(-8\left(x\cdot x\right)\left(y\cdot y^2\right)+12\left(x\cdot x^2\right)\left(y\cdot y\right)\)
`=`\(-8x^2y^3+12x^3y^2\)
`2.`
\(\left(-5x\right)\left(3x^3+7x^2-x\right)\)
`=`\(\left(-5x\right)\left(3x^3\right)+\left(-5x\right)\left(7x^2\right)+\left(-5x\right)\left(-x\right)\)
`=`\(-15x^4-35x^3+5x^2\)
`3.`
\(\left(3x-2\right)\left(4x+5\right)-6x\left(2x-1\right)\)
`=`\(3x\left(4x+5\right)-2\left(4x+5\right)-12x^2+6x\)
`=`\(12x^2+15x-8x-10-12x^2+6x\)
`=`\(\left(12x^2-12x^2\right)+\left(15x-8x+6x\right)-10\)
`=`\(13x-10\)
`4.`
\(2x^2\left(x^2-7x+9\right)\)
`=`\(2x^2\cdot x^2+2x^2\cdot\left(-7x\right)+2x^2\cdot9\)
`=`\(2x^4-14x^3+18x^2\)
`5.`
\(\left(3x-5\right)\left(x^2-5x+7\right)\)
`=`\(3x\left(x^2-5x+7\right)-5\left(x^2-5x+7\right)\)
`=`\(3x^3-15x^2+21x-5x^2+25x-35\)
`=`\(3x^3-20x^2+46x-35\)
\(a,=\left(x-1\right)^3\\ b,=\left(1-2x\right)\left(1+2x\right)\\ c,=x^3-8\\ d,=\left(3x-1\right)\left(9x^2+3x+1\right)\\ e,=\left(x+2\right)\left(x^2-2x+4\right)\\ g,=\left(x-2\right)^2\\ h,=x^2-4y^2\\ j,=\left(x-4\right)^2\)
\(1,\\ a,=3x^3-2x^2+5x\\ b,=2x^3y^2+\dfrac{2}{9}x^4y^2-\dfrac{1}{3}x^2y^3\\ c,=x^2-2x+6x-12=x^2+4x-12\\ 2,\\ a,\Rightarrow6x-9+4-2x=-3\\ \Rightarrow4x=2\Rightarrow x=\dfrac{1}{2}\\ b,\Rightarrow5x-2x^2+2x^2-2x=13\\ \Rightarrow3x=13\Rightarrow x=\dfrac{13}{3}\\ c,\Rightarrow5x^2-5x-5x^2+7x-10x+14=6\\ \Rightarrow-8x=-8\Rightarrow x=1\\ d,\Rightarrow6x^2+9x-6x^2+4x-15x+10=8\\ \Rightarrow-2x=-2\Rightarrow x=1\)
\(3,\\ A=2x^2+x-x^3-2x^2+x^3-x+3=3\\ B=6x^2-10x+33x-55-6x^2-14x-9x-21=-76\)
D = -x2 + 3x - 1 = -(x2 - 3x + 9/4) + 5/4 = -(x - 3/2)2 + 5/4
Ta có: -(x - 3/2)2 \(\le\)0 \(\forall\)x
=> -(x - 3/2)2 + 5/4 \(\le\)5/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của D = 5/4 tại x = 3/2
E = -3x2 + 4x + 2 = -3(x2 - 4/3x + 4/9) + 10/3 = -3(x - 2/3)2 + 10/3
Ta có: -3(x - 2/3)2 \(\le\)0 \(\forall\)x
=> -3(x - 2/3)2 + 10/3 \(\le\)10/3 \(\forall\)x
Dấu "=" xảy ra <=> x - 2/3 = 0 <=> x = 2/3
Vậy Max của E = 10/3 tại x = 2/3
F = 6x - 7x2 - 2 = -7(x2 - 6/7x + 9/49) + 5/7 = -7(x - 3/7)2 + 5/7
Ta có: -7(x - 3/7)2 \(\le\)0 \(\forall\)x
=> -7(x - 3/7)2 + 5/7 \(\le\)5/7 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/7 = 0 <=> x = 3/7
Vậy Max của F = 5/7 tại x = 3/7