K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

\(\sqrt{21-6\sqrt{6}}\)

\(=\sqrt{3\left(7-2\sqrt{6}\right)}\)

\(=\sqrt{3\left(6-2\sqrt{6}+1\right)}\)

\(=\sqrt{3\left(\sqrt{6}-1\right)^2}\)

\(=\sqrt{3}\left(\sqrt{6}-1\right)\)

\(=\sqrt{3}.\sqrt{6}-\sqrt{3}.1\)

\(=9\sqrt{2}-\sqrt{3}\)

10 tháng 7 2016

\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}=\sqrt{\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{\left(\sqrt{3}-\sqrt{2}\right)^2}}+\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2}}\)

\(=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{3}-\sqrt{2}}+\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}+\sqrt{3}}=\frac{\left(\sqrt{2}+\sqrt{3}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}=\frac{5+2\sqrt{6}+\left(5-2\sqrt{6}\right)}{3-2}=10\)

10 tháng 7 2016

Sai de bai r ban Ngoc oi

1 tháng 8 2019

\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-6\sqrt{20}+9}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

1 tháng 8 2019

Khó zậy

1 tháng 8 2019

\(2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}=2\sqrt{3+\sqrt{5-\sqrt{12+4\sqrt{3}+1}}}\)

\(=2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}\)

\(=2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}\)

\(=2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}\)

\(=2\sqrt{3+\sqrt{3}-1}=2\sqrt{2+\sqrt{3}}\)

1 tháng 8 2019

\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)

\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{13+30\sqrt{2}+30}\)

\(=\sqrt{\left(5+3\sqrt{2}\right)^2}=5+3\sqrt{2}\)

11 tháng 7 2016

\(\frac{1}{\sqrt{7-\sqrt{24}}+1}-\frac{1}{\sqrt{7+\sqrt{24}+1}}\)

\(=\frac{1}{\sqrt{6-2\sqrt{6}+1}+1}-\frac{1}{\sqrt{6+2\sqrt{6}+1}+1}\)

\(=\frac{1}{\sqrt{\left(\sqrt{6}-1\right)^2}+1}-\frac{1}{\sqrt{\left(\sqrt{6}+1\right)^2}+1}\)

\(=\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{6}+2}\)

\(=\frac{\sqrt{6}+2}{\sqrt{6}.\left(\sqrt{6}+2\right)}-\frac{\sqrt{6}}{\sqrt{6}.\left(\sqrt{6}+2\right)}\)

\(=\frac{2}{6+2\sqrt{6}}=\frac{12-4\sqrt{6}}{12}=\frac{3-\sqrt{6}}{3}\)

11 tháng 7 2016

Sao \(\frac{2}{6+2\sqrt{6}}=\frac{12-4\sqrt{6}}{12}\) hả bạn

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

21 tháng 2 2017

1-6+11-16+21-...+91-96+101                                                                                                                                                               =(1-6)+(11-16)+(21-26)+....+(91-96)+101                                                                                                                                             =(-5)+(-5)+.....+(-5)+101   (có 10 số (-5) )                                                                                                                                             =(-5).10+101                                                                                                                                                                                     =-50+101                                                                                                                                                                                         =51