Dùng tính chất đường trung bình của tam giác chứng minh trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ MH | AB
Mà AC | AB (tam giác ABC vuông tại A)
=>MH // AC
Lại có: CM=BM (AM là trung tuyến của tam giác ABC)
=>AH=BH hay MH là trung tuyến của tam giác AMB
Mà MH | AB hay MH là đường cao của tam giác AMB
=>Tam giác AMB cân tại M
=>AM=MB ,mà MB=MC (AM là trung tuyến của tam giác ABC)
=>AM=MB=MC
=>AM=BC:2 => Điều phải chứng minh
Gợi ý nhé :
G/s Tam giác ABC lấy M, N, Q lần lượt là trung điểm AB ; AC ; BC
CM : AQ = MN
Tự nghĩ tiếp đi, đến đây dễ zồi
▲ABC có chu vi 72cm,trung tuyến AM , đường cao AH , AM-AH=7cm
Đặt AH=x=>AM=x+7(x>0)
Ta có :
BC=2x
AB.AC=AH.BC=2x(x-7)=2x^2-14x
AB+AC=72-2x
AB^2+AB^2=BC^2=4x^2
=>2AB.AC=(AB+AC)^2-(AB^2+AC^2)=(72-2x)...
=>AB.AC=2592-144x
Ta có phương trình : 2x^2-14x=2592-144x
=>x=16(x>0)
=>SABC=(AB)/2=144cm2
Ở đây có này bạn: [Toán 9] ==> Vip giúp mình với đi? | Yahoo Hỏi & Đáp
tam giác vuông tại A ; AO trung tuyến
từ O kẻ OM // AB ; ON//AC
O trung điểm BC => OM,ON là đường trung bình tam giâc ABC tương ứng đỉnh B và C
=> M, N trung điểm của AC và AB
=> MN // =BC/2
Mặt khác góc BAC =90^0
=> tứ giác OMNA là hình chữ nhật
=> AO =MN
=> AO =1/2.BC => dpcm
Gọi a, b, c, h là độ dài hai cạnh góc vuông, cạnh huyền và đường cao
Có \(c=\sqrt{a^2+b^2},ab=ch\Leftrightarrow h=\dfrac{ab}{c}\)
Có \(\left\{{}\begin{matrix}a+b=70\\c+h=74\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=70\\\sqrt{a^2+b^2}+\dfrac{ab}{\sqrt{a^2+b^2}}=74\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+b=70\\a^2+b^2+ab=74\sqrt{a^2+b^2}\end{matrix}\right.\)
PT dưới tương đương: \(\left(a+b\right)^2-ab=74\sqrt{\left(a+b\right)^2-2ab}\)
\(\Leftrightarrow ab=1200\)
Suy ra \(\left\{{}\begin{matrix}a+b=70\\ab=1200\end{matrix}\right.\), a và b là hai nghiệm của pt \(x^2-70x+1200=0\)
\(\Leftrightarrow a=30,b=40\)
Vậy độ dài các cạnh góc vuông, cạnh huyền và đường cao là 30, 40, 50, 24.
Xét \(\Delta ABC\)vuông tại A,đường trung tuyến AM.
Ta sẽ chứng minh AM = \(\frac{1}{2}\)BC
Trên tia đối của tia MA,lấy điểm D sao cho MD = MA.
Ta có : \(AM=\frac{1}{2}AD\),cần chứng minh AD = BC.Dễ thấy :
\(\Delta BMD=\Delta CMA(c.g.c)\Rightarrow BD=AC,\widehat{B}_1=\widehat{C}\) do đó " \(BD//AC\).
Ta lại có : \(\widehat{BAC}=90^0\)nên \(\widehat{ABD}=90^0\). Do đó \(\Delta CAB=\Delta DBA\)
Vì cạnh AB chung, \(\widehat{CAB}=\widehat{DBA}=90^0,AC=BD\)
=> BC = AD
Vậy : \(AM=\frac{1}{2}BC\)
Cách 2 : Tự vẽ hình
Xét tam giác ABC vuông tại A,trung tuyến AD.Ta cần đi chứng minh : \(AD=\frac{1}{2}BC\)
Giả sử trái lại,tức là \(AD\ne\frac{1}{2}BC\)
Nếu \(AD>\frac{1}{2}BC\),suy ra :
AD > BD <=> \(\widehat{B}>\widehat{A}_2\),AD >CD <=> \(\widehat{C}>\widehat{A}_1\)
=> \(\widehat{B}+\widehat{C}>\widehat{A}_2+\widehat{A}_1\Leftrightarrow90^0>\widehat{A}\) mâu thuẫn
Nếu \(AD< \frac{1}{2}BC\),suy ra AD < BD <=> \(\widehat{B}< \widehat{A}_2,AD< CD\Leftrightarrow\widehat{C}< \widehat{A}_1\)
=> \(\widehat{B}+\widehat{C}< \widehat{A}_2+\widehat{A}_1\Leftrightarrow90^0< \widehat{A}\),mâu thuẫn
Vậy ta luôn có : AD = 1/2BC