K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

Ta có: A =  1   +   2   +   2 2   +   . . .   +   2 2009   +   2 2010

= 1 + 2 ( 1 + 2 +  2 2 ) + ... + 2 2008  ( 1 + 2 +  2 2  )

= 1 + 2 ( 1 + 2 + 4 ) + ... + 22008 ( 1 + 2 + 4 )

= 1 + 2 . 7 + ... +  2 2008  . 7 = 1 + 7 ( 2 + ... +  2 2008  )

Mà 7 ( 2 + ... +  2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.

5 tháng 2 2018

Ta có: A = 1 + 2 + 2 2  + 2 3 + ... + 2 2008  + 2 2009  + 2 2010

 

= 1 + 2 ( 1 + 2 + 22 ) + ... +  2 2008  ( 1 + 2 + 22 )

= 1 + 2 ( 1 + 2 + 4 ) + ... +  2 2008 ( 1 + 2 + 4 )

= 1 + 2 . 7 + ... + 2 2008 . 7 = 1 + 7 ( 2 + ... +  2 2008  )

Mà 7 ( 2 + ... +  2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.

11 tháng 10 2021

a) \(A=1+2+2^2+2^3+...+2^{99}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)

b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)

\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)

\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5

c) \(A=1+2+2^2+...+2^{99}\)

\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1

=> A không chia hết cho 7

     

 

16 tháng 10 2017

a, \(A=1+2+2^2+2^3+...+2^{2005}\)

\(2A=2.\left(1+2+2^2+2^3+...+2^{2005}\right)\)

\(2A=2+2^2+2^3+...+2^{2006}\)

\(A=2A-A=\left(2+2^2+2^3+...+2^{2006}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)

\(A=2^{2006}-1\)

c, Số số hạng của A là : (2005 -  1) + 1 = 2005 (số hạng) 

Nếu nhóm 3 số hạng vào 1 nhóm thì có :  2005 : 3 = 668 nhóm dư 1 số hạng 

Ta có : 

\(A=\left(1+2\right)+\left[\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2003}+2^{2004}+2^{2005}\right)\right]\)

\(A=3+\left[2^2.\left(1+2+2^2\right)+2^5.\left(1+2+2^2\right)+...+2^{2003}.\left(1+2+2^2\right)\right]\)

\(A=3+\left(2^2.7+2^5.7+...+2^{2003}.7\right)\)

\(\Rightarrow A\div7\) dư 3 

d, Làm tương tự c

4 tháng 12 2015

Cho A=2015^2016a) Tìm số dư của A khi chia cho 7 b) Tìm 2 chữ số tận cùng của A( Làm đồng dư thức )

tíc xong mình giải cho

 

10 tháng 7 2016

a, 2A= 2+2^2+2^3+2^4+2^5+...+2^2017

=> 2A-A= 2^2017-1

=> A= 2^2017-1/2

19 tháng 12 2018

bài này có trong đề thi cuối học kì 1 ko ???????

21 tháng 12 2018

a) Tìm được dư là 4227

b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505

Vậy A có tận cùng là 5.

8 tháng 12 2018

a) Ta có:

a=17x+11=23y+18=11z+3 (x,y,z E N)

=> a+74=17x+85=23y+92=11z+77

=> a+74 chia hết cho 17;23;11

Vì 3 số trên ntcn nên: a+74 chia hết cho 17.23.11=4301

Đặt: a+74=4301k (k E N*)

=> a=4301(k-1)+4227

nên: số dư của a khi chia cho 4301 là: 4227

b) 11+25+39+413+..........+505201

Ta dễ thấy rằng: 1;5;9;...vv là các số có dạng: 4k+1 (k E N)

=> 11+25+39+............+505201=(...1)+(...2)+(....3)+(...4)+........+(...4)+(...5)

Tổng tận cùng của 10 stn liên tiếp là:

1+2+3+4+5+6+7+8+9+0=45 có tc=5

Ta có 50 cặp nv nên sẽ có tc=0

5 số cuối là: (...1);(...2);(...3);(..4);(...5)

tc=1+2+3+4+5=15 có tc=5

Vậy tổng trên có tc=0+5=5

A có tc=5

9 tháng 12 2018

thank you nha