K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

a) Ta có: A = 5x - 2x2 + 1 = -2(x2 - 5/2x + 25/16) +33/8 = -2(x - 5/4)2 + 33/8 

Ta luôn có: -2(x - 5/4)2 \(\le\)0\(\forall\)x

=> -2(x - 5/4)2 + 33/8 \(\le\)33/8\(\forall\)x

Dấu "=" xảy ra <=> x - 5/4 = 0 <=> x = 5/4

vậy Max của A = 33/8 tại x = 5/4

b) B = (x - 2)(9 - x) = 9x - x2 - 18 + 2x = -(x2 - 11x + 121/4) + 49/4 = -(x - 11/2)2 + 49/4

Ta luôn có: -(x - 11/2)2 \(\le\)\(\forall\)x

=> -(x - 11/2)2 + 49/4 \(\le\)49/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 11/2 = 0 <=> x = 11/2

Vậy Max của B = 49/4 tại x = 11/2

a,  A= -2x2 + 5x + 1

           = -2 ( x2 - 5/2 x ) + 1

            \(=-2\left(x^2-\frac{2.5}{4}x+\frac{25}{16}\right)+\frac{33}{8}\)

          = \(\frac{33}{8}-2\left(x-\frac{5}{4}\right)^2\)\(\le\frac{33}{8}\forall x\)

   Dấu = xảy ra khi x - 5/4=0

                           \(\Rightarrow\)x=5/4

vậy GTLN của A = 33/8 khi x=5/4

b.

B=9x - 18 + 2x - x2    

= -x2 + 11x - 18

= - ( x2 - 11x) -18

= - (x2 - 2.x . 11/2 + 121/4 ) + 49/4

= 49/4 - (x-11/2)2

Dấu = xảy ra khi x-11/2 = 0

suy ra x = 11/2

vậy GTLN của B = 49/4 kgi x=11/2

#mã mã#

9 tháng 9 2021

\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)

9 tháng 9 2021

\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)

 

1 tháng 9 2021

a) \(2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)

b) \(5x-x^2+4=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\)

\(ĐTXR\Leftrightarrow x=\dfrac{5}{2}\)

c) \(x^2+5y^2-2xy+4y+3=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

\(ĐTXR\Leftrightarrow\)\(x=y=-\dfrac{1}{2}\)

b: ta có: \(-x^2+5x+4\)

\(=-\left(x^2-5x-4\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\right)\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

a: -x^2<=0

=>-x^2+1<=1

=>A<=1

Dấu = xảy ra khi x=0

b: (x+1)^2>=0

=>-2(x+1)^2<=0

=>B<=8

Dấu = xảy ra khi x=-1

3 tháng 10 2023

Bài 4.

\(A=2x^3+(x+1)^3-3x(x-2)(x+2)-3(x^2+5x+9)\\=2x^3+(x^3+3x^2+3x+1)-3x(x^2-4)-3x^2-15x-27\\=2x^3+x^3+3x^2+3x+1-3x^3+12x-3x^2-15x-27\\=(2x^3+x^3-3x^3)+(3x^2-3x^2)+(3x+12x-15x)+(1-27)\\=-26\\---\)

\(B=x(x-4x)+x(2-x)(x+2)+4(2x^2-5x+4)\\=x\cdot(-3x)+x(2-x)(2+x)+8x^2-20x+16\\=-3x^2+x(4-x^2)+8x^2-20x+16\\=-3x^2+4x-x^3+8x^2-20x+16\)

Bạn kiểm tra lại đề giúp mình!

\(C=(x-2y)(x^2+2xy+4y^2)-(x^3-8y^3+10)\) (sửa đề)

\(=x^3-(2y)^3-x^3+8y^2-10\\=x^3-8y^3-x^3+8y^3-10\\=(x^3-x^3)+(-8y^3+8y^3)-10\\=-10\)

Bài 5.

\(d)xy^2-3x^3y^2-2x(xy-3xy^2)\\=xy^2-3x^3y^2-2x^2y+6x^2y^2\\---\\f)(x-y)(2x+y)-2x^2+y^2+3xy\\=x(2x+y)-y(2x+y)-2x^2+y^2+3xy\\=2x^2+xy-2xy-y^2-2x^2+y^2+3xy\\=(2x^2-2x^2)+(xy-2xy+3xy)+(-y^2+y^2)\\=2xy\)

\(Toru\)

3 tháng 10 2023

cảm ơn bạn nhiều nhé. Câu C mình gõ phím vội nên quên mất ;để mik sửa

C=(x-2y)(x2+2xy+4x2)-(x3-8y3+10)

a: Ta có: \(A=x^2+3x+4\)

\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)

17 tháng 12 2022

\(-x^2-5x+5\\ =-\left(x^2+5x-5\right)\\ =-\left(x^2+5x+\dfrac{25}{4}-\dfrac{45}{4}\right)\\ -\left(x+\dfrac{5}{2}\right)^2+\dfrac{45}{4}\)

có \(\left(x+\dfrac{5}{2}\right)^2\ge0\\ =>-\left(x+\dfrac{5}{2}\right)^2\le0\\ =>-\left(x+\dfrac{5}{2}\right)^2+\dfrac{45}{4}\le\dfrac{45}{4}\)

dấu "=" xảy ra khi \(\left(x+\dfrac{5}{2}\right)^2=0< =>x=-\dfrac{5}{2}\)

vậy GTLN của biểu thức A là 45/4 khi x=-5/2