Cho a=111...12: b=111...4 (a và b có n chữ số 1). Chứng minh rằn ab+1 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 111...1000...0 + 111...1 - 222...2
(n cs 1)(n cs 0) (n cs 1) (n cs 2)
\(A=111...1\cdot10^n+111...1-222...2\)
(n cs 1) ( n cs 1 ) ( n cs 2 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> A = K( 9k + 1 ) + K - 2K
= 9K^2 + K + K - 2K
= 9K^2 = (3K)^2
=> A là một số chính phương
B = 111...1000...0 + 111...1 + 444...4 + 1
(n cs 1)(n cs 0) (n cs 1) (n cs 4)
\(\Rightarrow B=111...1\cdot10^n+111...1+444...4+1\)
( n cs 1 ) ( n cs 1 ) ( n cs 4 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> B = K( 9K + 1 ) + K + 4K + 1
= 9K^2 + 6K + 1
= ( 3K + 1 ) ^2
=> B là một số chính phương
a)a=111...111-222...222
=1111...111-2*111...111(số bị trừ có 2n chữ số 1,số trừ có n chữ số 1)
=111...111*100..01-2*1111...111(số bị trừ có n chữ số 1 và số trừ cũng thế)
=111...111(100...01-2)
=111...111*999...99 ( n chữ số 1,n chữ số 9)
=(111...11*3)*333...33
=333...333*333...333(cả 2 thừa số đều có n chữ số 3)
Ta có:
A + B + 1 = 1111...1 + 4444...4 + 1
(2n c/s 1) (n c/s 4)
= 1111...1000...0 + 1111...1 + 1111...1.4 + 1
(n c/s 1)(n c/s 0) (n c/s 1) (n c/s 1)
= 1111...1.1000...0 + 1111...1 + 1111...1.4 + 1
(n c/s 1) (n c/s 0) (n c/s 1) (n c/s 1)
= 1111...1.1000...05 + 1
(n c/s 1) (n-1 c/s 0)
= 1111...1.3.333...35 + 1
(n c/s 1) (n-1 c/s 3)
= 3333...3.333...35 + 1
(n c/s 3)(n-1 c/s 3)
= 3333...3.333...34 + 3333...3 + 1
(n c/s 3) (n-1 c/s 3) (n c/s 3)
= 3333...3.333...34 + 3333...34
(n c/s 3)(n-1 c/s 3) (n-1 c/s 3)
= 3333...342 là số chính phương (đpcm)
(n-1 c/s 3)
ab+1= 111...12 x 111...14 +1
= 111...12 x (111...12+2) +1
= 111...12 x 111...12 + 2 x 111...12 +1
=( 111...12 +1 )2 = 111...132
de do roi mat to cos cach khac:)
\(a=1111.....12\) (n chu so 1)
\(\Rightarrow a=1111...11+1\)(n+1 chu so 1)
\(b=111....14\)(n chu so 1)
\(\Rightarrow b=111....1+3\)
Ta co:\(a=\frac{10^{n+1}-1}{9}+1\)
\(b=\frac{10^{n+1}-1}{9}+3\)
Dat \(\frac{10^{n+1}-1}{9}=x\)
Ta co:
\(ab+1=\left(x+1\right)\left(x+3\right)+1=x^2+4x+4=\left(x+2\right)^2\)
Thay vao ta duoc:
\(ab+1=\left(111....13\right)^2\)
P/S:Mac du dai hon nhung se tot hon cho ai roi nao (dua thoi).Hihi!