K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

\(P=a^2+a+1\)

\(=a^2+\frac{1}{2}\cdot2\cdot a+\frac{1}{4}+\frac{3}{4}\)

\(=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(a+\frac{1}{2}\right)^2\ge0\Rightarrow\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow P\ge\frac{3}{4}\)

dấu "=" xảy ra khi : 

\(\left(a+\frac{1}{2}\right)^2=0\Rightarrow a+\frac{1}{2}=0\Rightarrow a=-\frac{1}{2}\)

vậy 

11 tháng 4 2016

A = 1 số tự nhiên bất kì

B = 0

16 tháng 1 2021

A = 1 số bất kì. 

B = 0

 ( vì số nào cộng hoặc trừ với 0 cũng bằng chính số đó )

 Vậy ..........................

16 tháng 12 2015

Vì |x-3| luôn lớn bằng 0 với mọi x

=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x

=> A luôn lớn bằng 100

Dấu "=" xảy ra <=> |x-3| = 0

=> x - 3 = 0

=> x = 3

Vậy Min A = -100 <=> x = 3

16 tháng 12 2015

Ta có |x - 3| > 0

=> |x - 3| + (-100) > - 100

hay A > 100

Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3

7 tháng 9 2016

Để M có giá trị nguyên thì x - 2 chia hết cho x + 3

=> (x + 3) - 5 chia hét cho x + 3

=> 5 chia hết cho x + 3

=> x + 3 thuộc Ư(5) = {-1;1;-5;5}

Ta có:

x + 3-5-115
x-8-4-22
7 tháng 4 2015

A; tất cả các số

B; 0

1 tháng 4 2016

a=tat ca cac so 

b=trứng ngỗng

để P thuộc Z =>2n+1 chia hết cho n+5

=>2n+10-9 chia hết cho n+5

=>2(n+5)-9 chia hết cho n+5

=>9 chia hết cho n+5

\(\Rightarrow n+5\in\left\{-9;-3;-1;1;3;9\right\}\)

\(\Rightarrow n\in\left\{-14;-8;-6;-4;-2;4\right\}\)

18 tháng 5 2016

Ta có giá trị : a=b=0

                   

18 tháng 5 2016

- Neu b > 0 thi a + b > a - b ( loai )

- Neu b = 0 thi a + 0 = a - 0 = a, ta co a tuy y

Vay: Ta tuy y chon gia tri cua a, con b = 0

Chang han: Neu a = 5, b = 0 thi 5 + 0 = 5 - 0

19 tháng 4 2016

a + b = a - b 

a + b = 0

a-b = 0

vậy a và b đều là 0

19 tháng 4 2016

trong bài tập toán lớp 5

Ta có:Số gì cộng 0 hay trừ 0 đều có kết quả như thế 

Suy ra b=0

Vậy a có thể bằng=0,1,2,3,......(vô số)

Vậy a=0,1,2,3......

b=0

1 tháng 11 2017

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)