Bài 1 : Cho tam giác ABC , vẽ đường thẳng xy đi qua A song song BC, vẽ đường thẳng zt đi qua B song song AC cắt đường thẳng xy tại D. Chứng tỏ góc D song song góc C.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a.Ta có xy//BC,MD//AB��//��,��//��
→AD//BM,AB//DM→ˆBMA=ˆMAD,ˆBAM=ˆAMD→��//��,��//��→���^=���^,���^=���^
Mà ΔABM,ΔMDAΔ���,Δ��� chung cạnh AM��
→ΔABM=ΔMDA(g.c.g)→Δ���=Δ���(�.�.�)
→AD=BM,MD=AB→��=��,��=��
Tương tự chứng minh được AE=MC,ME=AC��=��,��=��
→DE=DA+AE=BM+MC=BC→��=��+��=��+��=��
→ΔABC=ΔMDE(c.c.c)→Δ���=Δ���(�.�.�)
b.Gọi AM∩BD=I��∩��=�
→ˆIAD=ˆIMB,ˆIDA=ˆIBM(AD//BM)→���^=���^,���^=���^(��//��)
Mà AD=BM��=��
→ΔIAD=ΔIMB(g.c.g)→Δ���=Δ���(�.�.�)
→IA=IM,IB=ID→��=��,��=��
Lại có AE//CM→ˆEAI=ˆIMC��//��→���^=���^
Kết hợp AE=CM��=��
→ΔIAE=ΔIMC(c.g.c)→Δ���=Δ���(�.�.�)
→ˆAIE=ˆMIC→���^=���^
→ˆEIC=ˆAIE+ˆAIC=ˆMIC+ˆAIC=ˆAIM=180o→���^=���^+���^=���^+���^=���^=180�
→E,I,C→�,�,� thẳng hàng
→CE,AM,BD→��,��,�� đồng quy
+)Ta có: xy//BC và AC cắt xy tại A, cắt BC tại B
\(\Rightarrow\widehat{A_3}=\widehat{C}\)(so le trong) (1)
+) Ta có: zt // AC và xy cắt zt tại D, cắt AC tại A
\(\Rightarrow\widehat{A_3}=\widehat{D}\)(đồng vị) (2)
Từ (1) và (2) suy ra: \(\widehat{D}=\widehat{C}\left(đpcm\right)\)
Vậy...