K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

O O O N P H Q M 1 2 3

Do ba đường tròn (O1);(O2);(O3) đôi một tiếp xúc ngoài với nhau nên p(O1O2O3) = 5 + 7+ 9 = 21

Áp dụng công thức Hê-rông cho \(\Delta\)O1O2O3 ta có:

\(S_{O_1O_2O_3}=\sqrt{21\left(21-12\right)\left(21-16\right)\left(21-14\right)}=21\sqrt{15}\)

Và ta tính được \(O_3H=\frac{2S_{O_1O_2O_3}}{O_1O_2}=\frac{2.21\sqrt{15}}{5+7}=\frac{7\sqrt{15}}{2}\)

Áp dụng ĐL Pytagoras cho \(\Delta\)O2HO3\(O_2H=\sqrt{O_2O_3^2-O_3H^2}=\sqrt{\left(7+9\right)^2-\left(\frac{7\sqrt{15}}{2}\right)^2}=\frac{17}{2}\)

Suy ra \(HM=O_2H-O_2M=\frac{17}{2}-5=\frac{7}{2}\)

Từ O3 hạ O3Q vuông góc với PN. Khi đó NP = 2PQ và tứ giác HMQO3 là hình chữ nhật

Áp dụng ĐL Pytagoras ta có \(PQ=\sqrt{O_3P^2-O_3Q^2}=\sqrt{7^2-HM^2}=\frac{7\sqrt{3}}{2}\)

Do vậy \(NP=2PQ=7\sqrt{3}\). Kết luận \(NP=7\sqrt{3}.\)

31 tháng 5 2018

Ai giúp câu a, câu d vs

16 tháng 5 2021

( Mình sẽ làm tắt nha bạn, mấy chỗ đấy nó dễ rùi nếu ko hiểu thì cmt nhé )

a) Ta có: \(O_1B//O_2C\)( cùng vuông góc với BC )

\(\Rightarrow\widehat{BO_1A}+\widehat{CO_2A}=180^0\)

\(\Leftrightarrow\left(180^0-2\widehat{BAO_1}\right)+\left(180^0-2\widehat{CAO_2}\right)=180^0\)

\(\Leftrightarrow2\left(\widehat{BAO_1}+\widehat{CAO_2}\right)=180^0\)

\(\Leftrightarrow\widehat{BAO_1}+\widehat{CAO_2}=90^0\)

\(\Rightarrow\widehat{BAC}=90^0\)

=> tam giác ABC vuông tại A

b) \(\widehat{O_1BA}+\widehat{MBA}=\widehat{O_1AB}+\widehat{BAM}=90^0\)

\(\Rightarrow\widehat{O_1AM}=90^0\)

\(\Rightarrow AM\perp AO_1\)

=> AM là tiếp tuyến của \(\left(O_1\right)\)

CMTT : AM là tiếp tuyến của \(\left(O_2\right)\)

=> AM là tiếp tuyến chung của \(\left(O_1\right);\left(O_2\right)\)

+) Ta có: \(\hept{\begin{cases}\widehat{BMO_1}=\widehat{AMO_1}\\\widehat{CMO_2}=\widehat{AMO_2}\end{cases}}\)

Ta có; \(\widehat{BMO_1}+\widehat{AMO_1}+\widehat{CMO_2}+\widehat{AMO_2}=180^0\)

\(\Leftrightarrow2\left(\widehat{O_1AM}+\widehat{AMO_2}\right)=180^0\)

\(\Leftrightarrow\widehat{O_1AM}+\widehat{AMO_2}=90^0\)

\(\Leftrightarrow\widehat{O_1MO_2}=90^0\)

\(\Rightarrow O_1M\perp O_2M\)

d) Ta có: \(\widehat{O_1BA}=\widehat{O_1AB}=\widehat{O_2AD}=\widehat{O_2DA}\)

\(\widehat{\Rightarrow O_1BA}=\widehat{O_2DA}\)mà 2 góc này ở vị trí so le trong

\(\Rightarrow O_1B//O_2D\)

\(\Rightarrow\frac{AB}{AD}=\frac{AO_1}{AO_2}\left(1\right)\)

CMTT \(\Rightarrow\frac{AE}{AC}=\frac{AO_1}{AO_2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{AB}{AD}=\frac{AE}{AC}\)

\(\Rightarrow AB.AC=AD.AE\)

\(\Rightarrow\frac{1}{2}AB.AC=\frac{1}{2}AD.AE\)

\(\Rightarrow S_{\Delta ADE}=S_{\Delta ABC}\)

24 tháng 4 2017

Chọn B

11 tháng 10 2019

a, MPHQ là hình chữ nhật => MH = PQ

b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA

c, P M H ^ = M B H ^ => P Q H ^ = O 2 Q B ^ => PQ là tiếp tuyến của  O 2

Tương tự PQ cũng là tiếp tuyến ( O 1 )

30 tháng 10 2019

Nối O1O2; O2O3; O1O3. Đây là các đường nối tâm của hai vòng tròn tiếp xúc nhau

=> O1; C; O3 thẳng hàng, O1; A; O2 thẳng hàng và O2; B; O3 thẳng hàng

Nối E với O3 và F với O3

Xét tam giác O1AC có O1A=O1C (bk đường tròn (O1)) => tg O1AC cân tại O1 => ^O1AC=^O1CA (1)

Xét tam giác O3CE có O3C=O3E (bk đường tròn (O3)) => tg O3CE cân tại O3 => ^O3CE=^O3EC (2)

Mà ^O1CA=^O3CE (góc đối đỉnh) (3)

Từ (1) (2) và (3) => ^O1AC=^O3EC => O1O2//O3E  (*)

Tương tự như thế ta cũng c/m được O1O2//O3F (**)

Từ (*) và (**) => E; F; O3 thảng hàng (Từ O3 chỉ dựng được duy nhất 1 đường thẳng // O1O2)