K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

d: AC^2+HB^2

=AC^2+HB^2

AM^2+KC^2=AB^2+CH^2

AB^2-HB^2=AH^2

AC^2-CH^2=AH^2

=>AB^2-HB^2=AC^2-CH^2

=>AB^2+CH^2=AC^2+HB^2

=>AC^2+HB^2=AM^2+KC^2

A B C D E M N H

a) Xét \(\Delta ABC\)\(\Delta ADE\):

AB=AD(gt)

\(\widehat{BAC}=\widehat{DAE}=90^o\)

AC=AE(gt)

=> \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)

=> BC=DE ( 2 cạnh tương ứng)

=> Đpcm

b) Ta có \(\Delta ABD\)vuông cân tại A

=> \(\widehat{ABD}=\widehat{ADB}=\frac{\widehat{DAB}}{2}=\frac{90^o}{2}=45^o\)

\(\Delta AEC\)vuông cân tại A

=> \(\widehat{AEC}=\widehat{ACE}=\frac{\widehat{EAC}}{2}=\frac{90^o}{2}=45^o\)

=> \(\widehat{BDA}=\widehat{ECA}=45^o\)

Mà 2 góc này ở vị trí so le trong

=> BD//CE

=> Đpcm

c) Sửa đề: Kẻ dường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua A và vuông góc với MC cắt BC tại N. Chứng minh rằng CA vuông góc với NM

Gọi giao điể của NA và MC là I

Xét \(\Delta NMC\)có:

\(\hept{\begin{cases}NI\perp MC\\MH\perp NC\end{cases}}\)

Mà 2 đường cao này cắt nhau tại A

=> A là trực tâm của \(\Delta MNC\)

=> \(CA\perp NM\)

=> Đpcm

d) Ta có: \(\widehat{ADM}=\widehat{ABC}\left(\Delta ADE=\Delta ABC\right)\)

=> \(\widehat{ADM}+\widehat{AED}=\widehat{ABC}+\widehat{BAH}=90^o\)

=> \(\widehat{AED}=\widehat{BAH}\) Mà \(\widehat{BAH}=\widehat{MAE}\left(đđ\right)\)

=> \(\widehat{AED}=\widehat{MAE}\)

=> \(\Delta MAE\)cân tại M

=> MA=ME (1)

Lại có: \(\widehat{AED}=\widehat{ACB}\Rightarrow\widehat{AED}+\widehat{ADE}=\widehat{ACB}+\widehat{CAH}=90^o\)

=> \(\widehat{ADE}=\widehat{CAH}\)

Mà \(\widehat{CAH}=\widehat{DAM}\left(đđ\right)\)

=> \(\widehat{ADE}=\widehat{DAM}\)

=> \(\Delta DAM\)cân tại M

=> MD=MA (2)

Từ (1) và (2)

=> MA=MD=ME

=> \(MA=\frac{1}{2}DE\)

=> Đpcm

P/s: Thật ra định làm tắt cho bạn tự suy luận, nhưng sợ bạn ko hiểu nên thoi, mỏi cả tay:>>>

8 tháng 1 2018

Để cái hình vs tên đại diện như hâm ý

19 tháng 2 2018

Bùi Như Lạc cậu cũng hay đi bình phẩm người khác nhỉ chắc cậu hoàn hảo lắm à

Bài 2 : Cho tam giác ABC cân tại A. Kẻ BD vuông với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm BD và CE. Chứng minh rằng :Tam giác ADB bằng tam giác AECTam giác ADK bằng tam giác AEKAK là tia phân giác của góc ABài 3 : Cho tam giác ABC  cân ở A  ( góc A <  90 độ ). Vẽ BH  vuông góc với AC ( H thuộc AC), CK vuông góc với AB ( K thuộc AB )      A . CMR : AH = AK      B . Gọi I là giao điểm của BH và CK. CMR...
Đọc tiếp

Bài 2 : Cho tam giác ABC cân tại A. Kẻ BD vuông với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm BD và CE. Chứng minh rằng :

  1. Tam giác ADB bằng tam giác AEC
  2. Tam giác ADK bằng tam giác AEK
  3. AK là tia phân giác của góc A

Bài 3 : Cho tam giác ABC  cân ở A  ( góc A <  90 độ ). Vẽ BH  vuông góc với AC ( H thuộc AC), CK vuông góc với AB ( K thuộc AB )

      A . CMR : AH = AK

      B . Gọi I là giao điểm của BH và CK. CMR : AI là phân giác của góc A

      C . Gọi M là trung điểm của BC. CMR : AM vuông góc với BC

Bài 4 : Cho tam giác BFC cân tại B. Kẻ FE vuông góc với BC tại E, CA vuông góc với BF tại A.

a)      CMR: Tam giác BEF = tam giác BAC

b)     FE cắt CA tại D. CMR : BD là tia phân giác của góc ABC

c)      Gọi M là trung điểm của FC. CMR: BM vuông góc với AE

0