Cho hình vuông ABCD. Lấy P trên cạnh AB, Q trên cạnh BC sao cho BP=BQ. Gọi H là hình chiếu của B lên CP
a, CM: tam giác HBC ~ tam giác BPC
b, CM: CH/CD=BH/BQ và so sánh góc DCH= góc QBH
c, CM: tam giác CHD ~ tam giác BHQ và tính số đo góc DHQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
1:
Sửa đề: ΔBEC
Xét ΔHBC vuông tại H và ΔBEC vuông tại B có
góc HCB chung
=>ΔHBC đồng dạng với ΔBEC
2: ΔHBC đồng dạng với ΔBEC
=>CH/CB=BH/BE
=>CH/CD=BH/BF
b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Do đó: ΔADE\(\sim\)ΔACB
Suy ra: \(\widehat{ADE}=\widehat{ACB}\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
hay ΔABC vuông tại A
a) Xét tam giác BHP và tam giác CHB có: \(\widehat{HPB}=\widehat{HBC}\)( cùng phụ góc PBH) (1)
và \(\widehat{PHB}=\widehat{BHC}\left(=90^o\right)\)
=> tam giác BHP ~ tam giác CHB
=> \(\frac{BH}{HC}=\frac{BP}{BC}\Leftrightarrow\frac{BH}{HC}=\frac{BQ}{DC}\)( vì BP=BQ, BC=DC)
Ta lại có : \(\widehat{HPB}=\widehat{HCD}\) ( so le trong) (2)
Từ (1) , (2) => \(\widehat{HBC}=\widehat{HCD}\) => \(\widehat{HBQ}=\widehat{HCD}\)
Xét tam giác HBQ và tam giác HCD có:
\(\frac{BH}{HC}=\frac{BQ}{DC}\); \(\widehat{HBQ}=\widehat{HCD}\)
=> tam giác HBQ ~tam giác HCD
b) Có: tam giác HBQ ~tam giác HCD ( theo a)
=> \(\widehat{DHC}=\widehat{QHB}\)
mà \(\widehat{QHB}+\widehat{QHC}=\widehat{BHC}=90^o\)
=> \(\widehat{DHC}+\widehat{QHC}=\widehat{DHQ}=90^o\)