K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

1) ĐKXĐ: \(x\ge0;x\ne9\)

\(P=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\\ =\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{2\sqrt{x}-2-\sqrt{x}+3}\\ =\frac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\frac{1}{\sqrt{x}+1}\\ =\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\frac{-3}{\sqrt{x}+3}\)

2) Ta thấy \(x=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\) (bạn tự biến đổi x cụ thể ra nhé, mà x hoàn toàn thỏa mãn ĐK) nên \(\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\).

Từ đây, thay \(\sqrt{x}=\sqrt{3}-1\) vào P, ta được:

\(P=\frac{-3}{\sqrt{3}-1+3}=\frac{-3}{\sqrt{3}+2}\)

3) Để \(P< \frac{-1}{2}\) thì:

\(\frac{-3}{\sqrt{x}+3}< \frac{-1}{2}=\frac{1}{-2}\\ \Leftrightarrow\sqrt{x}+3>6\\ \Leftrightarrow\sqrt{x}>3\\ \Leftrightarrow x>9\left(t/m\right)\)

Chúc bạn học tốt nhaok.

26 tháng 7 2019

1.\(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

= \(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

= \(\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

= \(\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

= \(\frac{-3}{\sqrt{x}+3}\)

2. x = 4 - \(2\sqrt{3}\)

= \(\left(\sqrt{3}-1\right)^2\)

=> \(\sqrt{x}=\sqrt{3}-1\)

Thay vào P, ta có:

P = \(\frac{-3}{\sqrt{3}+2}\)

3. Để P < -1/2

=> \(\frac{-3}{\sqrt{x}+3}< \frac{-1}{2}\)

<=> \(\frac{3}{\sqrt{x}+3}>\frac{1}{2}\)

<=> \(\sqrt{x}+3< 6\)

<=> \(\sqrt{x}< 3\)

<=> x < 9

Mà x \(\ge0\)

=> \(0\le x< 9\) thì P < - 1/2

25 tháng 7 2018

a,\(x\ge0,x\ne49\)

ĐK: \(x-9\ne0\Rightarrow x\ne9\)

\(\sqrt{x}\ge0\Rightarrow x\ge0\)

\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)

\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)

ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)

\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)

2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)

\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)

\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)

23 tháng 5 2021

Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé

14 tháng 7 2016

a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)

b) \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=-\frac{3}{2\left(\sqrt{x}-3\right)}\)c) Để P nguyên thì \(2\left(\sqrt{x}-3\right)\in\left\{-3;-1;1;3\right\}\)=> x thuộc rỗng.