rut gon bthuc
\(\sqrt{98}\)- \(\sqrt{72}\)- 0,5\(\sqrt{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)
\(=7\sqrt{2}-6\sqrt{2}+\sqrt{2}\)
\(=\left(7-6+1\right)\sqrt{2}\)
\(=2\sqrt{2}\)
3) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\)
\(=3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\)
\(=\left(3-4+7\right)\sqrt{a}\)
\(=6\sqrt{a}\)
4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)
\(=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
\(=4\sqrt{b}-5\sqrt{10b}\)
Rut gon:
\(B=\frac{\sqrt{8+\sqrt{40+8\sqrt{5}}}+\sqrt{8-\sqrt{40+8\sqrt{5}}}}{\sqrt{50}+\sqrt{250}}\)
Mẫu số bằng \(\sqrt{50}+\sqrt{250}=5\sqrt{2}+5\sqrt{10}=5\sqrt{2}\left(1+\sqrt{5}\right).\)
Kí hiệu tử số là \(A\) thì ta có
\(A^2=\left(\sqrt{8+\sqrt{40+8\sqrt{5}}}+\sqrt{8-\sqrt{40+8\sqrt{5}}}\right)^2\)
\(=8+\sqrt{40+8\sqrt{5}}+2\sqrt{8+\sqrt{40+8\sqrt{5}}}\cdot\sqrt{8-\sqrt{40+8\sqrt{5}}}+8-\sqrt{40+8\sqrt{5}}\)
\(=16+2\sqrt{\left(8+\sqrt{40+8\sqrt{5}}\right)\left(8-\sqrt{40+8\sqrt{5}}\right)}\)
\(=16+2\sqrt{8^2-\left(40+8\sqrt{5}\right)}=16+2\sqrt{24-8\sqrt{5}}\)
\(=16+2\sqrt{4-2\cdot2\cdot2\sqrt{5}+\left(2\sqrt{5}\right)^2}=16+2\sqrt{\left(2-2\sqrt{5}\right)^2}\)
\(=16+2\left|2-2\sqrt{5}\right|=16-4+4\sqrt{5}=12+4\sqrt{5}=4\left(3+\sqrt{5}\right).\)
Vậy \(A=4\left(3+\sqrt{5}\right)=2\left(6+2\sqrt{5}\right)=2\left(\sqrt{5}+1\right)^2.\)
Thành thử \(B=\frac{2\left(\sqrt{5}+1\right)^2}{5\sqrt{2}\left(1+\sqrt{5}\right)}=\frac{\sqrt{2}\left(\sqrt{5}+1\right)}{5}=\frac{\sqrt{10}+\sqrt{2}}{5}.\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
\(\sqrt{98}-\sqrt{72}-0,5\sqrt{8}.\)
\(=\sqrt{7\cdot7\cdot2}-\sqrt{6\cdot6\cdot2}-0,5\sqrt{2\cdot2\cdot2}\)
\(=7\sqrt{2}-6\sqrt{2}-0,5\cdot2\sqrt{2}\)
\(=7\sqrt{2}-6\sqrt{2}-\sqrt{2}\)
\(=0\)
\(\sqrt{98}-\sqrt{72}-\frac{\sqrt{8}}{2}\)
=\(7\sqrt{2}-6\sqrt{2}-\sqrt{2}\)
\(=0\)