K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

Gợi ý nhé!  Tách rồi sử dụng Cauchy cho hai số ko âm

\(P=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\)

\(\ge2\sqrt{3.12}+2\sqrt{16}+2.6=32\)

"=" xảy ra <=> x=2; y=4

26 tháng 7 2019

Ta có : \(P=5x+3y+\frac{12}{x}+\frac{16}{y}\) 

\(P=2\left(x+y\right)+\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)\)  

Áp dụng BĐT Cô-si, ta có: \(3x+\frac{12}{x}\ge2\sqrt{\left(3.12\right)}=12\) 

\(y+\frac{16}{y}\ge2\sqrt{\left(1.16\right)}=8\) 

Ta có: \(x+y\ge6\) 

\(\Rightarrow2\left(x+y\right)\ge12\) 

\(\Rightarrow P\ge12+12+8=32\)

Dấu''='' xảy ra khi:

 \(3x=\frac{12}{x}\) , \(x+y=6\) , \(y=\frac{16}{y}\) 

\(\Rightarrow x=2,y=4\)

Vậy giá trị nhỏ nhất của P là 32 khi x = 2, y = 4

21 tháng 8 2015

Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz

 

AH
Akai Haruma
Giáo viên
3 tháng 4 2020

Lời giải:

Nếu $x>0$ thì $-x< 0$. Do đó $-x< 0< x\Rightarrow -x< x$. Đáp án A sai

Nếu $x>0\Rightarrow -x< 0$. Đáp án B sai

Nếu $x< 0\Rightarrow -x>0$. Do đó $-x>0>x\Rightarrow -x>x$. Đáp án C sai

Nếu $x>0\Rightarrow -x< 0$. Đáp án D đúng (chọn)

10 tháng 12 2016

vì x,y,z>0 nên áp dụng bđt côsi ta có

x+y >= 2\(\sqrt{xy}\)

y+z >= 2\(\sqrt{yz}\)

z+x >= 2\(\sqrt{xz}\)

\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)

                                >= 8xyz

Dấu = xảy ra <=> x=y=z

8 tháng 5 2019

Áp dụng bất đẳng thức Cô-si ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}\)

\(=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu = khi x=y=z

11 tháng 12 2016

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\)

\(\frac{y}{y+1}=1-\frac{y}{y+1}\)

\(\frac{z}{z+4}=1-\frac{4}{z+4}\)

\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)

\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)

 

 

 

24 tháng 12 2015

Ta  có x. (-x)=x.x.(-1)=-x^2>0

       ==> x^2<0 (vì âm của nó là dương)       (1)

              mà x>0==>x^2>0                          (2)

Từ (1) và (2) ==> mâu thuẫn

Vậy x thuộc rỗng