K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

\(P=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x+\sqrt{x}-2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{x+\sqrt{x}-2}\)

\(P=\frac{x-\sqrt{x}-x+x\sqrt{x}+6-x-3\sqrt{x}-2}{x+\sqrt{x}-2}\)

\(P=\frac{-x+x\sqrt{x}+4-4\sqrt{x}}{x+\sqrt{x}-2}\)

\(P=\frac{x\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(\sqrt{x}-1\right)\left(x-4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)

\(P=\sqrt{x}-2\)

26 tháng 7 2019

@Trần Ngọc Thảo

\(Q=\frac{\left(x+27\right)\cdot P}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\ge6\)

\(\Leftrightarrow Q=\frac{\left(x+27\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\ge6\)

\(\Leftrightarrow\frac{x+27}{\sqrt{x}+3}\ge6\)

\(\Leftrightarrow x+27\ge6\left(\sqrt{x}+3\right)\)

\(\Leftrightarrow x+27-6\sqrt{x}-18\ge0\)

\(\Leftrightarrow x-6\sqrt{x}+9\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)^2\ge0\)( luôn đúng )

Vậy \(x\ge0\)thì bất phương trình luôn đúng

\(\)

19 tháng 7 2017

câu 2

\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)

câu 1

\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

26 tháng 7 2019

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\frac{-x+x\sqrt{x}+6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{x-\sqrt{x}-x+x\sqrt{x}+6-x-\sqrt{x}-2\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{x\sqrt{x}-x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{x\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{\left(x-4\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\sqrt{x}-2\)

b) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

\(Q=\frac{\left(x+27\right)P}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\frac{\left(x+27\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ =\frac{x+27}{\sqrt{x}+3}\)

\(Q=\frac{x+27}{\sqrt{x}+3}\ge6\\ \Leftrightarrow\frac{x+27}{\sqrt{x}+3}-6\ge0\\ \Leftrightarrow\frac{x+27-6\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\ge0\\ \Leftrightarrow\frac{x-6\sqrt{x}+45}{\sqrt{x}+3}\ge0\)

Dễ thấy \(x-6\sqrt{x}+45=\left(\sqrt{x}-3\right)^2+36\ge36>0\forall x\ge0\)

\(\sqrt{x}+3\ge3>0\forall x\ge0\)

=> Ko có giá trị nào của x thỏa mãn yêu cầu

P/s: Nếu đề là \(x\sqrt{x}+27\)thì sẽ khác một chút :v

26 tháng 7 2019

Bạn ơi chỗ kia phải là \(\frac{x-6\sqrt{x}+9}{\sqrt{x}+3}\)

23 tháng 7 2019

@Bảo Nguyễn Lê Gia
P/S: tag hộ

23 tháng 7 2019

1) ĐKXĐ \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\\ =\left(\frac{\sqrt{x}-5\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\left(\frac{x-4-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\\ =\frac{-4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\frac{-4\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{-4}\\ =\sqrt{x}+1\)

2)

\(P=\sqrt{x}+1=\sqrt{\frac{3-\sqrt{5}}{2}}+1\\ \sqrt{\frac{6-2\sqrt{5}}{4}}+1\\ =\sqrt{\frac{5-2\cdot\sqrt{5}\cdot1+1}{4}}+1\\ =\sqrt{\frac{\left(\sqrt{5}-1\right)^2}{4}}+1\\ =\frac{\sqrt{5}-1}{2}+1\\ \frac{\sqrt{5}-1+2}{2}\\ =\frac{\sqrt{5}+1}{2}\)

23 tháng 7 2019

Hỏi đáp Toán

18 tháng 2 2020

Ta có :

\(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\)

\(=\left(\frac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}-\frac{1}{\left(\sqrt{x}+2\right)^2}\right).\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right).\left(\sqrt{x}+2\right)\)

\(=\frac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}.\left(\sqrt{x}+2\right)\)

\(=\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

2 tháng 8 2017

c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)

Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)

\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)

Đế C' nguyên thì a + 1 là ước của 1

\(\Rightarrow a=0\)

\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)

\(\Rightarrow x=\frac{9}{4}\left(l\right)\)

Vậy không có x.

Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks

2 tháng 8 2017

a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)

\(=\frac{1}{3-2\sqrt{x}}\)

Câu b, c tự làm nhé

Y
30 tháng 6 2019

\(ĐK:\left\{{}\begin{matrix}x\ge0\\x\ne9\\x\ne25\end{matrix}\right.\)

\(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{2x}{9-x}-1\right):\left(\frac{\sqrt{x}-1}{x-3\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)-2x-\left(x-9\right)}{x-9}:\frac{\sqrt{x}-1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{-2x-3\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{-\sqrt{x}+5}\)

\(=\frac{-\left(2\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\cdot\frac{\sqrt{x}}{5-\sqrt{x}}\)

\(=\frac{-\left(2\sqrt{x}-3\right)\cdot\sqrt{x}}{5-\sqrt{x}}=\frac{-2x+3\sqrt{x}}{5-\sqrt{x}}\)

30 tháng 6 2019

ĐKXĐ :\(x\) > 0 , x\(\ne9\)

\(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{2x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}-1\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{2}{\sqrt{x}}\right)=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+2x-\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)=\)\(\frac{3\sqrt{x}-x+2x-9+x}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x-3}\right)}{\sqrt{x}-1-2\sqrt{x}+6}=\frac{2x-3\sqrt{x}-9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{5-\sqrt{x}}=\frac{\left(\sqrt{x}+3\right)\left(2\sqrt{x}-3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{5-\sqrt{x}}=\frac{\sqrt{x}\left(2\sqrt{x}-3\right)}{\sqrt{x}-5}\)

23 tháng 7 2019

1) ĐXKĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(A=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\frac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\frac{x+3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\ =\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\\=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

2)

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)

Để biểu thức A nhận giá trị nguyên thì \(2⋮\sqrt{x}-1\Leftrightarrow\sqrt{x}-1\inƯ\left(2\right)\)

Ta có bảng sau:

\(\sqrt{x}-1\) 1 -1 2 -2
\(\sqrt{x}\) 2 0 3 -1
\(x\) 4(tm) 0(tm) 9(tm) loại

Vậy S={0;4;9}